Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
SoTrap.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28//
29/*-----------------------------HEPVis----------------------------------------*/
30/* */
31/* Node: SoTrap */
32/* Description: Represents the G4Trap Geant Geometry entity */
33/* Author: Joe Boudreau Nov 11 1996 */
34/* */
35/* */
36/*---------------------------------------------------------------------------*/
37
38// this :
39#include "HEPVis/nodes/SoTrap.h"
40
41#include <assert.h>
42#include <cmath>
43#include <Inventor/SbBox.h>
44#include <Inventor/actions/SoGLRenderAction.h>
45#include <Inventor/actions/SoAction.h>
46#include <Inventor/fields/SoSFFloat.h>
47#include <Inventor/misc/SoChildList.h>
48#include <Inventor/nodes/SoSeparator.h>
49#include <Inventor/nodes/SoIndexedFaceSet.h>
50#include <Inventor/nodes/SoNormal.h>
51#include <Inventor/nodes/SoCoordinate3.h>
52#include <Inventor/nodes/SoNormalBinding.h>
53#include <Inventor/SoPrimitiveVertex.h>
54#include <Inventor/elements/SoTextureCoordinateElement.h>
55
56#include "HEPVis/SbMath.h"
57
58// This statement is required
59SO_NODE_SOURCE(SoTrap)
60
61// Constructor
63 // This statement is required
64 SO_NODE_CONSTRUCTOR(SoTrap);
65
66 // Data fields are initialized like this:
67 SO_NODE_ADD_FIELD(pDz, (1.0));
68 SO_NODE_ADD_FIELD(pTheta, (0.0));
69 SO_NODE_ADD_FIELD(pPhi, (0.0));
70 SO_NODE_ADD_FIELD(pDy1, (1.0));
71 SO_NODE_ADD_FIELD(pDx1, (1.0));
72 SO_NODE_ADD_FIELD(pDx2, (1.0));
73 SO_NODE_ADD_FIELD(pDy2, (1.0));
74 SO_NODE_ADD_FIELD(pDx3, (1.0));
75 SO_NODE_ADD_FIELD(pDx4, (1.0));
76 SO_NODE_ADD_FIELD(pAlp1, (0.0));
77 SO_NODE_ADD_FIELD(pAlp2, (0.0));
78 SO_NODE_ADD_FIELD(alternateRep, (NULL));
79 children = new SoChildList(this);
80}
81
82// Destructor
84 delete children;
85}
86
87
88// initClass
90 // This statement is required.
91 static bool first = true;
92 if (first) {
93 first = false;
94 SO_NODE_INIT_CLASS(SoTrap,SoShape,"Shape");
95 }
96}
97
98
99// generatePrimitives
100void SoTrap::generatePrimitives(SoAction *action) {
101 // This variable is used to store each vertex
102 SoPrimitiveVertex pv;
103
104 // Access the stat from the action
105 SoState *state = action->getState();
106
107 // See if we have to use a texture coordinate function,
108 // rather than generating explicit texture coordinates.
109 SbBool useTexFunction=
110 (SoTextureCoordinateElement::getType(state) ==
111 SoTextureCoordinateElement::FUNCTION);
112
113 // If we need to generate texture coordinates with a function,
114 // we'll need an SoGLTextureCoordinateElement. Otherwise, we'll
115 // set up the coordinates directly.
116 const SoTextureCoordinateElement *tce = NULL;
117 SbVec4f texCoord;
118 if (useTexFunction) {
119 tce = SoTextureCoordinateElement::getInstance(state);
120 }
121 else {
122 texCoord[2] = 0.0;
123 texCoord[3] = 1.0;
124 }
125 SbVec3f point, normal;
126
127
128 //////////////////////////////////////////
129 //----------------------------------------
130#define GEN_VERTEX(pv,x,y,z,s,t,nx,ny,nz) \
131 point.setValue(x,y,z); \
132 normal.setValue(nx,ny,nz); \
133 if (useTexFunction) { \
134 texCoord=tce->get(point,normal); \
135 } \
136 else { \
137 texCoord[0]=s; \
138 texCoord[1]=t; \
139 } \
140 pv.setPoint(point); \
141 pv.setNormal(normal); \
142 pv.setTextureCoords(texCoord); \
143 shapeVertex(&pv);
144 //----------------------------------------
145 //////////////////////////////////////////
146
147 const int NPOINTS=8, NFACES=6, NINDICES = NFACES*5;
148 int indices[NINDICES] = {3,2,1,0, SO_END_FACE_INDEX, //z back.
149 4,5,6,7, SO_END_FACE_INDEX, //z front.
150 0,1,5,4, SO_END_FACE_INDEX, //y up.
151 1,2,6,5, SO_END_FACE_INDEX, //x left.
152 2,3,7,6, SO_END_FACE_INDEX, //y down.
153 3,0,4,7, SO_END_FACE_INDEX}; //x right.
154
155 // points for the eight vertices
156 float TthetaCphi = FTAN(pTheta.getValue())*FCOS(pPhi.getValue());
157 float TthetaSphi = FTAN(pTheta.getValue())*FSIN(pPhi.getValue());
158 float Talp1 = FTAN(pAlp1.getValue());
159 float Talp2 = FTAN(pAlp2.getValue());
160
161 float points[NPOINTS][3];
162 points[0][0] = pDx2.getValue()+pDy1.getValue()*Talp1;
163 points[0][1] = pDy1.getValue();
164 points[0][2] = -pDz.getValue();
165
166 points[1][0] = -pDx2.getValue()+pDy1.getValue()*Talp1;
167 points[1][1] = pDy1.getValue();
168 points[1][2] = -pDz.getValue();
169
170 points[2][0] = -pDx1.getValue()-pDy1.getValue()*Talp1;
171 points[2][1] = -pDy1.getValue();
172 points[2][2] = -pDz.getValue();
173
174 points[3][0] = pDx1.getValue()-pDy1.getValue()*Talp1;
175 points[3][1] = -pDy1.getValue();
176 points[3][2] = -pDz.getValue();
177
178 points[4][0] = pDx4.getValue()+pDy2.getValue()*Talp2;
179 points[4][1] = pDy2.getValue();
180 points[4][2] = pDz.getValue();
181
182 points[5][0] = -pDx4.getValue()+pDy2.getValue()*Talp2;
183 points[5][1] = pDy2.getValue();
184 points[5][2] = pDz.getValue();
185
186 points[6][0] = -pDx3.getValue()-pDy2.getValue()*Talp2;
187 points[6][1] = -pDy2.getValue();
188 points[6][2] = pDz.getValue();
189
190 points[7][0] = pDx3.getValue()-pDy2.getValue()*Talp2;
191 points[7][1] = -pDy2.getValue();
192 points[7][2] = pDz.getValue();
193
194 int i;
195 for (i=0;i<4;i++) {
196 points[i][0] -= pDz.getValue()*TthetaCphi;
197 points[i][1] -= pDz.getValue()*TthetaSphi;
198 }
199 for (i=4;i<8;i++) {
200 points[i][0] += pDz.getValue()*TthetaCphi;
201 points[i][1] += pDz.getValue()*TthetaSphi;
202 }
203
204 SbVec3f normals[NFACES];
205 int nf;
206 for (nf=0;nf<NFACES;nf++) {
207 int j0 = indices[5*nf + 0];
208 int j1 = indices[5*nf + 1];
209 int j2 = indices[5*nf + 2];
210 SbVec3f p0(points[j0][0],points[j0][1],points[j0][2]);
211 SbVec3f p1(points[j1][0],points[j1][1],points[j1][2]);
212 SbVec3f p2(points[j2][0],points[j2][1],points[j2][2]);
213 normals[nf] = (p1-p0).cross(p2-p0);
214 normals[nf].normalize();
215 }
216
217 float x,y,z;
218 int index;
219 for (nf=0;nf<NFACES;nf++) {
220 beginShape(action,TRIANGLE_FAN);
221 index = indices[nf * 5];
222 x = points[index][0];
223 y = points[index][1];
224 z = points[index][2];
225 GEN_VERTEX(pv,x,y,z,0.0,0.0,normals[nf][0],normals[nf][1],normals[nf][2]);
226 index = indices[nf * 5 + 1];
227 x = points[index][0];
228 y = points[index][1];
229 z = points[index][2];
230 GEN_VERTEX(pv,x,y,z,0.0,0.0,normals[nf][0],normals[nf][1],normals[nf][2]);
231 index = indices[nf * 5 + 2];
232 x = points[index][0];
233 y = points[index][1];
234 z = points[index][2];
235 GEN_VERTEX(pv,x,y,z,0.0,0.0,normals[nf][0],normals[nf][1],normals[nf][2]);
236 index = indices[nf * 5 + 3];
237 x = points[index][0];
238 y = points[index][1];
239 z = points[index][2];
240 GEN_VERTEX(pv,x,y,z,0.0,0.0,normals[nf][0],normals[nf][1],normals[nf][2]);
241 endShape();
242 }
243}
244
245// getChildren
246SoChildList *SoTrap::getChildren() const {
247 return children;
248}
249
250
251// computeBBox
252void SoTrap::computeBBox(SoAction *, SbBox3f &box, SbVec3f &center ){
253 float pDx= pDx1.getValue(),pDy=pDy1.getValue();
254
255 if (pDx2.getValue() > pDx) pDx = pDx2.getValue();
256 if (pDx3.getValue() > pDx) pDx = pDx3.getValue();
257 if (pDx4.getValue() > pDx) pDx = pDx4.getValue();
258 if (pDy2.getValue() > pDy) pDy = pDy2.getValue();
259 float TthetaCphi = FTAN(pTheta.getValue())*FCOS(pPhi.getValue());
260 float TthetaSphi = FTAN(pTheta.getValue())*FSIN(pPhi.getValue());
261 float Xalp = FFABS(std::tan(pAlp1.getValue())*pDy1.getValue());
262 float Xalp2 = FFABS(std::tan(pAlp2.getValue())*pDy2.getValue());
263 if (Xalp< Xalp2) Xalp=Xalp2;
264 pDx += FFABS(TthetaCphi*pDz.getValue());
265 pDx += Xalp;
266 pDy += FFABS(TthetaSphi*pDz.getValue());
267
268
269 center.setValue(0,0,0);
270 box.setBounds(SbVec3f(-pDx,-pDy,-pDz.getValue()),
271 SbVec3f( pDx, pDy, pDz.getValue()));
272}
273
274
275
276
277// updateChildren
278void SoTrap::updateChildren() {
279
280
281 // Redraw the G4Trap....
282
283 assert(children->getLength()==1);
284 SoSeparator *sep = (SoSeparator *) ( *children)[0];
285 SoCoordinate3 *theCoordinates = (SoCoordinate3 *) ( sep->getChild(0));
286 SoNormal *theNormals = (SoNormal *) ( sep->getChild(1));
287 SoNormalBinding *theNormalBinding = (SoNormalBinding *) ( sep->getChild(2));
288 SoIndexedFaceSet *theFaceSet = (SoIndexedFaceSet *) ( sep->getChild(3));
289
290 const int NPOINTS=8, NFACES=6, NINDICES = NFACES*5;
291 float points[NPOINTS][3];
292 // Indices for the eight faces
293#ifdef INVENTOR2_0
294 static long
295#else
296 static int32_t
297#endif
298 indices[NINDICES] = {3,2,1,0, SO_END_FACE_INDEX, // bottom
299 4,5,6,7, SO_END_FACE_INDEX, // top
300 0,1,5,4, SO_END_FACE_INDEX,
301 1,2,6,5, SO_END_FACE_INDEX,
302 2,3,7,6, SO_END_FACE_INDEX,
303 3,0,4,7, SO_END_FACE_INDEX};
304
305
306 // points for the eight vertices
307 float TthetaCphi = FTAN(pTheta.getValue())*FCOS(pPhi.getValue());
308 float TthetaSphi = FTAN(pTheta.getValue())*FSIN(pPhi.getValue());
309 float Talp1 = FTAN(pAlp1.getValue());
310 float Talp2 = FTAN(pAlp2.getValue());
311
312 points[0][0] = pDx2.getValue()+pDy1.getValue()*Talp1;
313 points[0][1] = pDy1.getValue();
314 points[0][2] = -pDz.getValue();
315
316 points[1][0] = -pDx2.getValue()+pDy1.getValue()*Talp1;
317 points[1][1] = pDy1.getValue();
318 points[1][2] = -pDz.getValue();
319
320 points[2][0] = -pDx1.getValue()-pDy1.getValue()*Talp1;
321 points[2][1] = -pDy1.getValue();
322 points[2][2] = -pDz.getValue();
323
324 points[3][0] = pDx1.getValue()-pDy1.getValue()*Talp1;
325 points[3][1] = -pDy1.getValue();
326 points[3][2] = -pDz.getValue();
327
328 points[4][0] = pDx4.getValue()+pDy2.getValue()*Talp2;
329 points[4][1] = pDy2.getValue();
330 points[4][2] = pDz.getValue();
331
332 points[5][0] = -pDx4.getValue()+pDy2.getValue()*Talp2;
333 points[5][1] = pDy2.getValue();
334 points[5][2] = pDz.getValue();
335
336 points[6][0] = -pDx3.getValue()-pDy2.getValue()*Talp2;
337 points[6][1] = -pDy2.getValue();
338 points[6][2] = pDz.getValue();
339
340 points[7][0] = pDx3.getValue()-pDy2.getValue()*Talp2;
341 points[7][1] = -pDy2.getValue();
342 points[7][2] = pDz.getValue();
343
344 int i;
345 for (i=0;i<4;i++) {
346 points[i][0] -= pDz.getValue()*TthetaCphi;
347 points[i][1] -= pDz.getValue()*TthetaSphi;
348 }
349 for (i=4;i<8;i++) {
350 points[i][0] += pDz.getValue()*TthetaCphi;
351 points[i][1] += pDz.getValue()*TthetaSphi;
352 }
353
354 for (int np=0;np<NPOINTS;np++) theCoordinates->point.set1Value(np,points[np][0],points[np][1],points[np][2]);
355 theFaceSet->coordIndex.setValues(0,NINDICES,indices);
356 theNormals->vector.deleteValues(0);
357 theNormals->vector.insertSpace(0,6);
358 for (int n=0;n<6;n++) {
359 int i0 = 5*n+0,i1=5*n+1,i2=5*n+2;
360 int j0 = theFaceSet->coordIndex[i0];
361 int j1 = theFaceSet->coordIndex[i1];
362 int j2 = theFaceSet->coordIndex[i2];
363 SbVec3f p0= theCoordinates->point[j0];
364 SbVec3f p1= theCoordinates->point[j1];
365 SbVec3f p2= theCoordinates->point[j2];
366 SbVec3f normal = (p1-p0).cross(p2-p0);
367 normal.normalize();
368 theNormals->vector.set1Value(n,normal);
369 }
370 theNormalBinding->value=SoNormalBinding::PER_FACE;
371}
372
373// generateChildren
374void SoTrap::generateChildren() {
375
376 // This routines creates one SoSeparator, one SoCoordinate3, and
377 // one SoLineSet, and puts it in the child list. This is done only
378 // once, whereas redrawing the position of the coordinates occurs each
379 // time an update is necessary, in the updateChildren routine.
380
381 assert(children->getLength() ==0);
382 SoSeparator *sep = new SoSeparator();
383 SoCoordinate3 *theCoordinates = new SoCoordinate3();
384 SoNormal *theNormals = new SoNormal();
385 SoNormalBinding *theNormalBinding = new SoNormalBinding();
386 SoIndexedFaceSet *theFaceSet = new SoIndexedFaceSet();
387 //
388 // This line costs some in render quality! but gives speed.
389 //
390 sep->addChild(theCoordinates);
391 sep->addChild(theNormals);
392 sep->addChild(theNormalBinding);
393 sep->addChild(theFaceSet);
394 children->append(sep);
395}
396
397// generateAlternateRep
399
400 // This routine sets the alternate representation to the child
401 // list of this mode.
402
403 if (children->getLength() == 0) generateChildren();
404 updateChildren();
405 alternateRep.setValue((SoSeparator *) ( *children)[0]);
406}
407
408// clearAlternateRep
410 alternateRep.setValue(NULL);
411}
#define FFABS(x)
Definition: SbMath.h:51
#define FCOS(x)
Definition: SbMath.h:40
#define FSIN(x)
Definition: SbMath.h:41
#define FTAN(x)
Definition: SbMath.h:44
#define GEN_VERTEX(pv, x, y, z, s, t, nx, ny, nz)
Definition: SoTrap.h:81
SoSFFloat pDx2
Half-length along x of the side at y=+pDy1 of the face at -pDz.
Definition: SoTrap.h:118
SoSFFloat pDz
half-length along Z
Definition: SoTrap.h:97
virtual void clearAlternateRep()
We better be able to clear it, too!
Definition: SoTrap.cc:409
SoSFFloat pAlp2
Definition: SoTrap.h:140
SoSFFloat pDx4
Half-length along x of the side at y=+pDy2 of the face at +pDz.
Definition: SoTrap.h:130
SoSFFloat pDy1
Half-length along y of the face at -pDz.
Definition: SoTrap.h:110
virtual void generateAlternateRep()
Definition: SoTrap.cc:398
virtual void computeBBox(SoAction *action, SbBox3f &box, SbVec3f &center)
compute bounding Box, required
Definition: SoTrap.cc:252
SoSFFloat pAlp1
Definition: SoTrap.h:135
SoSFFloat pTheta
Polar angle of the line joining the centres of the faces at -/+pDz.
Definition: SoTrap.h:101
virtual ~SoTrap()
Destructor, required.
Definition: SoTrap.cc:83
SoSFFloat pDx3
Half-length along x of the side at y=-pDy2 of the face at +pDz.
Definition: SoTrap.h:126
SoSFFloat pDx1
Half-length along x of the side at y=-pDy1 of the face at -pDz.
Definition: SoTrap.h:114
SoSFFloat pPhi
Definition: SoTrap.h:106
static void initClass()
Class Initializer, required.
Definition: SoTrap.cc:89
virtual SoChildList * getChildren() const
GetChildList, required whenever the class has hidden children.
Definition: SoTrap.cc:246
virtual void generatePrimitives(SoAction *action)
Generate Primitives, required.
Definition: SoTrap.cc:100
SoSFFloat pDy2
Half-length along y of the face at +pDz.
Definition: SoTrap.h:122
SoSFNode alternateRep
Alternate rep - required.
Definition: SoTrap.h:145