Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4BulirschStoer.cc
Go to the documentation of this file.
1// ********************************************************************
2// * License and Disclaimer *
3// * *
4// * The Geant4 software is copyright of the Copyright Holders of *
5// * the Geant4 Collaboration. It is provided under the terms and *
6// * conditions of the Geant4 Software License, included in the file *
7// * LICENSE and available at http://cern.ch/geant4/license . These *
8// * include a list of copyright holders. *
9// * *
10// * Neither the authors of this software system, nor their employing *
11// * institutes,nor the agencies providing financial support for this *
12// * work make any representation or warranty, express or implied, *
13// * regarding this software system or assume any liability for its *
14// * use. Please see the license in the file LICENSE and URL above *
15// * for the full disclaimer and the limitation of liability. *
16// * *
17// * This code implementation is the result of the scientific and *
18// * technical work of the GEANT4 collaboration. *
19// * By using, copying, modifying or distributing the software (or *
20// * any work based on the software) you agree to acknowledge its *
21// * use in resulting scientific publications, and indicate your *
22// * acceptance of all terms of the Geant4 Software license. *
23// ********************************************************************
24//
25// G4BulirschStoer class implementation
26// Based on bulirsch_stoer.hpp from boost
27//
28// Author: Dmitry Sorokin, Google Summer of Code 2016
29// --------------------------------------------------------------------
30
31#include "G4BulirschStoer.hh"
32
33#include "G4FieldUtils.hh"
34
35namespace
36{
37 constexpr G4double STEPFAC1 = 0.65;
38 constexpr G4double STEPFAC2 = 0.94;
39 constexpr G4double STEPFAC3 = 0.02;
40 constexpr G4double STEPFAC4 = 4.0;
41 constexpr G4double KFAC1 = 0.8;
42 constexpr G4double KFAC2 = 0.9;
43 constexpr G4double inv_STEPFAC1 = 1.0 / STEPFAC1;
44 constexpr G4double inv_STEPFAC4 = 1.0 / STEPFAC4;
45} // namespace
46
48 G4int nvar, G4double eps_rel, G4double max_dt)
49 : fnvar(nvar), m_eps_rel(eps_rel), m_midpoint(equation,nvar),
50 m_last_step_rejected(false), m_first(true), m_dt_last(0.0), m_max_dt(max_dt)
51{
52 /* initialize sequence of stage numbers and work */
53
54 for(G4int i = 0; i < m_k_max + 1; ++i)
55 {
56 m_interval_sequence[i] = 2 * (i + 1);
57 if (i == 0)
58 {
59 m_cost[i] = m_interval_sequence[i];
60 }
61 else
62 {
63 m_cost[i] = m_cost[i-1] + m_interval_sequence[i];
64 }
65 for(G4int k = 0; k < i; ++k)
66 {
67 const G4double r = static_cast<G4double>(m_interval_sequence[i])
68 / static_cast<G4double>(m_interval_sequence[k]);
69 m_coeff[i][k] = 1.0 / (r * r - 1.0); // coefficients for extrapolation
70 }
71
72 // crude estimate of optimal order
73 m_current_k_opt = 4;
74
75 // no calculation because log10 might not exist for value_type!
76
77 //const G4double logfact = -log10(std::max(eps_rel, 1.0e-12)) * 0.6 + 0.5;
78 //m_current_k_opt = std::max(1.,
79 // std::min(static_cast<G4double>(m_k_max-1), logfact));
80 }
81}
82
85 G4double& t, G4double out[], G4double& dt)
86{
87 if(m_max_dt < dt)
88 {
89 // given step size is bigger then max_dt set limit and return fail
90 //
91 dt = m_max_dt;
92 return step_result::fail;
93 }
94
95 if (dt != m_dt_last)
96 {
97 reset(); // step size changed from outside -> reset
98 }
99
100 G4bool reject = true;
101
102 G4double new_h = dt;
103
104 /* m_current_k_opt is the estimated current optimal stage number */
105
106 for(G4int k = 0; k <= m_current_k_opt+1; ++k)
107 {
108 // the stage counts are stored in m_interval_sequence
109 //
110 m_midpoint.SetSteps(m_interval_sequence[k]);
111 if(k == 0)
112 {
113 m_midpoint.DoStep(in, dxdt, out, dt);
114 /* the first step, nothing more to do */
115 }
116 else
117 {
118 m_midpoint.DoStep(in, dxdt, m_table[k-1], dt);
119 extrapolate(k, out);
120 // get error estimate
121 for (G4int i = 0; i < fnvar; ++i)
122 {
123 m_err[i] = out[i] - m_table[0][i];
124 }
125 const G4double error =
126 field_utils::relativeError(out, m_err, dt, m_eps_rel);
127 h_opt[k] = calc_h_opt(dt, error, k);
128 work[k] = static_cast<G4double>(m_cost[k]) / h_opt[k];
129
130 if( (k == m_current_k_opt-1) || m_first) // convergence before k_opt ?
131 {
132 if(error < 1.0)
133 {
134 // convergence
135 reject = false;
136 if( (work[k] < KFAC2 * work[k-1]) || (m_current_k_opt <= 2) )
137 {
138 // leave order as is (except we were in first round)
139 m_current_k_opt = std::min(m_k_max - 1 , std::max(2 , k + 1));
140 new_h = h_opt[k];
141 new_h *= static_cast<G4double>(m_cost[k + 1])
142 / static_cast<G4double>(m_cost[k]);
143 }
144 else
145 {
146 m_current_k_opt = std::min(m_k_max - 1, std::max(2, k));
147 new_h = h_opt[k];
148 }
149 break;
150 }
151 else if(should_reject(error , k) && !m_first)
152 {
153 reject = true;
154 new_h = h_opt[k];
155 break;
156 }
157 }
158 if(k == m_current_k_opt) // convergence at k_opt ?
159 {
160 if(error < 1.0)
161 {
162 // convergence
163 reject = false;
164 if(work[k-1] < KFAC2 * work[k])
165 {
166 m_current_k_opt = std::max( 2 , m_current_k_opt-1 );
167 new_h = h_opt[m_current_k_opt];
168 }
169 else if( (work[k] < KFAC2 * work[k-1]) && !m_last_step_rejected )
170 {
171 m_current_k_opt = std::min(m_k_max - 1, m_current_k_opt + 1);
172 new_h = h_opt[k];
173 new_h *= static_cast<G4double>(m_cost[m_current_k_opt])
174 / static_cast<G4double>(m_cost[k]);
175 }
176 else
177 {
178 new_h = h_opt[m_current_k_opt];
179 }
180 break;
181 }
182 else if(should_reject(error, k))
183 {
184 reject = true;
185 new_h = h_opt[m_current_k_opt];
186 break;
187 }
188 }
189 if(k == m_current_k_opt + 1) // convergence at k_opt+1 ?
190 {
191 if(error < 1.0) // convergence
192 {
193 reject = false;
194 if(work[k-2] < KFAC2 * work[k-1])
195 {
196 m_current_k_opt = std::max(2, m_current_k_opt - 1);
197 }
198 if((work[k] < KFAC2 * work[m_current_k_opt]) && !m_last_step_rejected)
199 {
200 m_current_k_opt = std::min(m_k_max - 1 , k);
201 }
202 new_h = h_opt[m_current_k_opt];
203 }
204 else
205 {
206 reject = true;
207 new_h = h_opt[m_current_k_opt];
208 }
209 break;
210 }
211 }
212 }
213
214 if(!reject)
215 {
216 t += dt;
217 }
218
219 if(!m_last_step_rejected || new_h < dt)
220 {
221 // limit step size
222 new_h = std::min(m_max_dt, new_h);
223 m_dt_last = new_h;
224 dt = new_h;
225 }
226
227 m_last_step_rejected = reject;
228 m_first = false;
229
230 return reject ? step_result::fail : step_result::success;
231}
232
234{
235 m_first = true;
236 m_last_step_rejected = false;
237}
238
239void G4BulirschStoer::extrapolate(std::size_t k , G4double xest[])
240{
241 /* polynomial extrapolation, see http://www.nr.com/webnotes/nr3web21.pdf
242 * uses the obtained intermediate results to extrapolate to dt->0 */
243
244 for(std::size_t j = k - 1 ; j > 0; --j)
245 {
246 for (G4int i = 0; i < fnvar; ++i)
247 {
248 m_table[j-1][i] = m_table[j][i] * (1. + m_coeff[k][j])
249 - m_table[j-1][i] * m_coeff[k][j];
250 }
251 }
252 for (G4int i = 0; i < fnvar; ++i)
253 {
254 xest[i] = m_table[0][i] * (1. + m_coeff[k][0]) - xest[i] * m_coeff[k][0];
255 }
256}
257
259G4BulirschStoer::calc_h_opt(G4double h , G4double error , std::size_t k) const
260{
261 /* calculates the optimal step size for a given error and stage number */
262
263 const G4double expo = 1.0 / (2 * k + 1);
264 const G4double facmin = std::pow(STEPFAC3, expo);
265 G4double fac;
266
267 G4double facminInv= 1.0 / facmin;
268 if (error == 0.0)
269 {
270 fac = facminInv;
271 }
272 else
273 {
274 fac = STEPFAC2 * std::pow(error * inv_STEPFAC1 , -expo);
275 fac = std::max(facmin * inv_STEPFAC4, std::min( facminInv, fac));
276 }
277
278 return h * fac;
279}
280
281//why is not used!!??
282G4bool G4BulirschStoer::set_k_opt(std::size_t k, G4double& dt)
283{
284 /* calculates the optimal stage number */
285
286 if(k == 1)
287 {
288 m_current_k_opt = 2;
289 return true;
290 }
291 if( (work[k-1] < KFAC1 * work[k]) || (k == m_k_max) ) // order decrease
292 {
293 m_current_k_opt = (G4int)k - 1;
294 dt = h_opt[ m_current_k_opt ];
295 return true;
296 }
297 else if( (work[k] < KFAC2 * work[k-1])
298 || m_last_step_rejected || (k == m_k_max-1) )
299 { // same order - also do this if last step got rejected
300 m_current_k_opt = (G4int)k;
301 dt = h_opt[m_current_k_opt];
302 return true;
303 }
304 else { // order increase - only if last step was not rejected
305 m_current_k_opt = (G4int)k + 1;
306 dt = h_opt[m_current_k_opt - 1] * m_cost[m_current_k_opt]
307 / m_cost[m_current_k_opt - 1];
308 return true;
309 }
310}
311
312G4bool G4BulirschStoer::in_convergence_window(G4int k) const
313{
314 if( (k == m_current_k_opt - 1) && !m_last_step_rejected )
315 {
316 return true; // decrease stepsize only if last step was not rejected
317 }
318 return (k == m_current_k_opt) || (k == m_current_k_opt + 1);
319}
320
321
322G4bool G4BulirschStoer::should_reject(G4double error, G4int k) const
323{
324 if(k == m_current_k_opt - 1)
325 {
326 const G4double d = G4double(m_interval_sequence[m_current_k_opt]
327 * m_interval_sequence[m_current_k_opt+1]);
328 const G4double e = G4double(m_interval_sequence[0]);
329 const G4double e2 = e*e;
330 // step will fail, criterion 17.3.17 in NR
331 return error * e2 * e2 > d * d; // was return error > dOld * dOld; (where dOld= d/e; )
332 }
333 else if(k == m_current_k_opt)
334 {
335 const G4double d = G4double(m_interval_sequence[m_current_k_opt]);
336 const G4double e = G4double(m_interval_sequence[0]);
337 return error * e * e > d * d; // was return error > dOld * dOld; (where dOld= d/e; )
338 }
339 else
340 {
341 return error > 1.0;
342 }
343}
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
G4BulirschStoer(G4EquationOfMotion *equation, G4int nvar, G4double eps_rel, G4double max_dt=DBL_MAX)
step_result try_step(const G4double in[], const G4double dxdt[], G4double &t, G4double out[], G4double &dt)
void SetSteps(G4int steps)
void DoStep(const G4double yIn[], const G4double dydxIn[], G4double yOut[], G4double hstep) const
G4double relativeError(const G4double y[], const G4double yerr[], G4double hstep, G4double errorTolerance)
Definition: G4FieldUtils.cc:90