Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4IntersectingCone.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Implementation of G4IntersectingCone, a utility class which calculates
27// the intersection of an arbitrary line with a fixed cone
28//
29// Author: David C. Williams ([email protected])
30// --------------------------------------------------------------------
31
32#include "G4IntersectingCone.hh"
34
35// Constructor
36//
38 const G4double z[2] )
39{
40 const G4double halfCarTolerance
42
43 // What type of cone are we?
44 //
45 type1 = (std::abs(z[1]-z[0]) > std::abs(r[1]-r[0]));
46
47 if (type1) // tube like
48 {
49 B = (r[1] - r[0]) / (z[1] - z[0]);
50 A = (r[0]*z[1] - r[1]*z[0]) / (z[1] -z[0]);
51 }
52 else // disk like
53 {
54 B = (z[1] - z[0]) / (r[1] - r[0]);
55 A = (z[0]*r[1] - z[1]*r[0]) / (r[1] - r[0]);
56 }
57
58 // Calculate extent
59 //
60 rLo = std::min(r[0], r[1]) - halfCarTolerance;
61 rHi = std::max(r[0], r[1]) + halfCarTolerance;
62 zLo = std::min(z[0], z[1]) - halfCarTolerance;
63 zHi = std::max(z[0], z[1]) + halfCarTolerance;
64}
65
66// Fake default constructor - sets only member data and allocates memory
67// for usage restricted to object persistency.
68//
70 : zLo(0.), zHi(0.), rLo(0.), rHi(0.), A(0.), B(0.)
71{
72}
73
74// Destructor
75//
77{
78}
79
80// HitOn
81//
82// Check r or z extent, as appropriate, to see if the point is possibly
83// on the cone.
84//
86 const G4double z )
87{
88 //
89 // Be careful! The inequalities cannot be "<=" and ">=" here without
90 // punching a tiny hole in our shape!
91 //
92 if (type1)
93 {
94 if (z < zLo || z > zHi) return false;
95 }
96 else
97 {
98 if (r < rLo || r > rHi) return false;
99 }
100
101 return true;
102}
103
104// LineHitsCone
105//
106// Calculate the intersection of a line with our conical surface, ignoring
107// any phi division
108//
110 const G4ThreeVector& v,
111 G4double* s1, G4double* s2 )
112{
113 if (type1)
114 {
115 return LineHitsCone1( p, v, s1, s2 );
116 }
117 else
118 {
119 return LineHitsCone2( p, v, s1, s2 );
120 }
121}
122
123// LineHitsCone1
124//
125// Calculate the intersections of a line with a conical surface. Only
126// suitable if zPlane[0] != zPlane[1].
127//
128// Equation of a line:
129//
130// x = x0 + s*tx y = y0 + s*ty z = z0 + s*tz
131//
132// Equation of a conical surface:
133//
134// x**2 + y**2 = (A + B*z)**2
135//
136// Solution is quadratic:
137//
138// a*s**2 + b*s + c = 0
139//
140// where:
141//
142// a = tx**2 + ty**2 - (B*tz)**2
143//
144// b = 2*( px*vx + py*vy - B*(A + B*pz)*vz )
145//
146// c = x0**2 + y0**2 - (A + B*z0)**2
147//
148// Notice, that if a < 0, this indicates that the two solutions (assuming
149// they exist) are in opposite cones (that is, given z0 = -A/B, one z < z0
150// and the other z > z0). For our shapes, the invalid solution is one
151// which produces A + Bz < 0, or the one where Bz is smallest (most negative).
152// Since Bz = B*s*tz, if B*tz > 0, we want the largest s, otherwise,
153// the smaller.
154//
155// If there are two solutions on one side of the cone, we want to make
156// sure that they are on the "correct" side, that is A + B*z0 + s*B*tz >= 0.
157//
158// If a = 0, we have a linear problem: s = c/b, which again gives one solution.
159// This should be rare.
160//
161// For b*b - 4*a*c = 0, we also have one solution, which is almost always
162// a line just grazing the surface of a the cone, which we want to ignore.
163// However, there are two other, very rare, possibilities:
164// a line intersecting the z axis and either:
165// 1. At the same angle std::atan(B) to just miss one side of the cone, or
166// 2. Intersecting the cone apex (0,0,-A/B)
167// We *don't* want to miss these! How do we identify them? Well, since
168// this case is rare, we can at least swallow a little more CPU than we would
169// normally be comfortable with. Intersection with the z axis means
170// x0*ty - y0*tx = 0. Case (1) means a==0, and we've already dealt with that
171// above. Case (2) means a < 0.
172//
173// Now: x0*tx + y0*ty = 0 in terms of roundoff error. We can write:
174// Delta = x0*tx + y0*ty
175// b = 2*( Delta - B*(A + B*z0)*tz )
176// For:
177// b*b - 4*a*c = epsilon
178// where epsilon is small, then:
179// Delta = epsilon/2/B
180//
182 const G4ThreeVector& v,
183 G4double* s1, G4double* s2 )
184{
185 static const G4double EPS = DBL_EPSILON; // Precision constant,
186 // originally it was 1E-6
187 G4double x0 = p.x(), y0 = p.y(), z0 = p.z();
188 G4double tx = v.x(), ty = v.y(), tz = v.z();
189
190 // Value of radical can be inaccurate due to loss of precision
191 // if to calculate the coefficiets a,b,c like the following:
192 // G4double a = tx*tx + ty*ty - sqr(B*tz);
193 // G4double b = 2*( x0*tx + y0*ty - B*(A + B*z0)*tz);
194 // G4double c = x0*x0 + y0*y0 - sqr(A + B*z0);
195 //
196 // For more accurate calculation of radical the coefficients
197 // are splitted in two components, radial and along z-axis
198 //
199 G4double ar = tx*tx + ty*ty;
200 G4double az = sqr(B*tz);
201 G4double br = 2*(x0*tx + y0*ty);
202 G4double bz = 2*B*(A + B*z0)*tz;
203 G4double cr = x0*x0 + y0*y0;
204 G4double cz = sqr(A + B*z0);
205
206 // Instead radical = b*b - 4*a*c
207 G4double arcz = 4*ar*cz;
208 G4double azcr = 4*az*cr;
209 G4double radical = (br*br - 4*ar*cr) + ((std::max(arcz,azcr) - 2*bz*br) + std::min(arcz,azcr));
210
211 // Find the coefficients
212 G4double a = ar - az;
213 G4double b = br - bz;
214 G4double c = cr - cz;
215
216 if (radical < -EPS*std::fabs(b)) { return 0; } // No solution
217
218 if (radical < EPS*std::fabs(b))
219 {
220 //
221 // The radical is roughly zero: check for special, very rare, cases
222 //
223 if (std::fabs(a) > 1/kInfinity)
224 {
225 if(B==0.) { return 0; }
226 if ( std::fabs(x0*ty - y0*tx) < std::fabs(EPS/B) )
227 {
228 *s1 = -0.5*b/a;
229 return 1;
230 }
231 return 0;
232 }
233 }
234 else
235 {
236 radical = std::sqrt(radical);
237 }
238
239 if (a > 1/kInfinity)
240 {
241 G4double sa, sb, q = -0.5*( b + (b < 0 ? -radical : +radical) );
242 sa = q/a;
243 sb = c/q;
244 if (sa < sb) { *s1 = sa; *s2 = sb; } else { *s1 = sb; *s2 = sa; }
245 if (A + B*(z0+(*s1)*tz) < 0) { return 0; }
246 return 2;
247 }
248 else if (a < -1/kInfinity)
249 {
250 G4double sa, sb, q = -0.5*( b + (b < 0 ? -radical : +radical) );
251 sa = q/a;
252 sb = c/q;
253 *s1 = (B*tz > 0)^(sa > sb) ? sb : sa;
254 return 1;
255 }
256 else if (std::fabs(b) < 1/kInfinity)
257 {
258 return 0;
259 }
260 else
261 {
262 *s1 = -c/b;
263 if (A + B*(z0+(*s1)*tz) < 0) { return 0; }
264 return 1;
265 }
266}
267
268// LineHitsCone2
269//
270// See comments under LineHitsCone1. In this routine, case2, we have:
271//
272// Z = A + B*R
273//
274// The solution is still quadratic:
275//
276// a = tz**2 - B*B*(tx**2 + ty**2)
277//
278// b = 2*( (z0-A)*tz - B*B*(x0*tx+y0*ty) )
279//
280// c = ( (z0-A)**2 - B*B*(x0**2 + y0**2) )
281//
282// The rest is much the same, except some details.
283//
284// a > 0 now means we intersect only once in the correct hemisphere.
285//
286// a > 0 ? We only want solution which produces R > 0.
287// since R = (z0+s*tz-A)/B, for tz/B > 0, this is the largest s
288// for tz/B < 0, this is the smallest s
289// thus, same as in case 1 ( since sign(tz/B) = sign(tz*B) )
290//
292 const G4ThreeVector& v,
293 G4double* s1, G4double* s2 )
294{
295 static const G4double EPS = DBL_EPSILON; // Precision constant,
296 // originally it was 1E-6
297 G4double x0 = p.x(), y0 = p.y(), z0 = p.z();
298 G4double tx = v.x(), ty = v.y(), tz = v.z();
299
300 // Special case which might not be so rare: B = 0 (precisely)
301 //
302 if (B==0)
303 {
304 if (std::fabs(tz) < 1/kInfinity) { return 0; }
305
306 *s1 = (A-z0)/tz;
307 return 1;
308 }
309
310 // Value of radical can be inaccurate due to loss of precision
311 // if to calculate the coefficiets a,b,c like the following:
312 // G4double a = tz*tz - B2*(tx*tx + ty*ty);
313 // G4double b = 2*( (z0-A)*tz - B2*(x0*tx + y0*ty) );
314 // G4double c = sqr(z0-A) - B2*( x0*x0 + y0*y0 );
315 //
316 // For more accurate calculation of radical the coefficients
317 // are splitted in two components, radial and along z-axis
318 //
319 G4double B2 = B*B;
320
321 G4double az = tz*tz;
322 G4double ar = B2*(tx*tx + ty*ty);
323 G4double bz = 2*(z0-A)*tz;
324 G4double br = 2*B2*(x0*tx + y0*ty);
325 G4double cz = sqr(z0-A);
326 G4double cr = B2*(x0*x0 + y0*y0);
327
328 // Instead radical = b*b - 4*a*c
329 G4double arcz = 4*ar*cz;
330 G4double azcr = 4*az*cr;
331 G4double radical = (br*br - 4*ar*cr) + ((std::max(arcz,azcr) - 2*bz*br) + std::min(arcz,azcr));
332
333 // Find the coefficients
334 G4double a = az - ar;
335 G4double b = bz - br;
336 G4double c = cz - cr;
337
338 if (radical < -EPS*std::fabs(b)) { return 0; } // No solution
339
340 if (radical < EPS*std::fabs(b))
341 {
342 //
343 // The radical is roughly zero: check for special, very rare, cases
344 //
345 if (std::fabs(a) > 1/kInfinity)
346 {
347 if ( std::fabs(x0*ty - y0*tx) < std::fabs(EPS/B) )
348 {
349 *s1 = -0.5*b/a;
350 return 1;
351 }
352 return 0;
353 }
354 }
355 else
356 {
357 radical = std::sqrt(radical);
358 }
359
360 if (a < -1/kInfinity)
361 {
362 G4double sa, sb, q = -0.5*( b + (b < 0 ? -radical : +radical) );
363 sa = q/a;
364 sb = c/q;
365 if (sa < sb) { *s1 = sa; *s2 = sb; } else { *s1 = sb; *s2 = sa; }
366 if ((z0 + (*s1)*tz - A)/B < 0) { return 0; }
367 return 2;
368 }
369 else if (a > 1/kInfinity)
370 {
371 G4double sa, sb, q = -0.5*( b + (b < 0 ? -radical : +radical) );
372 sa = q/a;
373 sb = c/q;
374 *s1 = (tz*B > 0)^(sa > sb) ? sb : sa;
375 return 1;
376 }
377 else if (std::fabs(b) < 1/kInfinity)
378 {
379 return 0;
380 }
381 else
382 {
383 *s1 = -c/b;
384 if ((z0 + (*s1)*tz - A)/B < 0) { return 0; }
385 return 1;
386 }
387}
G4double B(G4double temperature)
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4double A[17]
double z() const
double x() const
double y() const
G4double GetSurfaceTolerance() const
static G4GeometryTolerance * GetInstance()
G4bool HitOn(const G4double r, const G4double z)
G4int LineHitsCone(const G4ThreeVector &p, const G4ThreeVector &v, G4double *s1, G4double *s2)
G4int LineHitsCone1(const G4ThreeVector &p, const G4ThreeVector &v, G4double *s1, G4double *s2)
G4IntersectingCone(const G4double r[2], const G4double z[2])
G4int LineHitsCone2(const G4ThreeVector &p, const G4ThreeVector &v, G4double *s1, G4double *s2)
#define EPS
T sqr(const T &x)
Definition: templates.hh:128
#define DBL_EPSILON
Definition: templates.hh:66