Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4AnnihiToMuPair.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// ------------ G4AnnihiToMuPair physics process ------
29// by H.Burkhardt, S. Kelner and R. Kokoulin, November 2002
30// -----------------------------------------------------------------------------
31//
32//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......//
33//
34// 27.01.03 : first implementation (hbu)
35// 04.02.03 : cosmetic simplifications (mma)
36// 25.10.04 : migrade to new interfaces of ParticleChange (vi)
37// 28.02.18 : cross section now including SSS threshold factor
38//
39//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
40
41#include "G4AnnihiToMuPair.hh"
42
43#include "G4ios.hh"
44#include "Randomize.hh"
46#include "G4SystemOfUnits.hh"
47
48#include "G4Positron.hh"
49#include "G4MuonPlus.hh"
50#include "G4MuonMinus.hh"
51#include "G4TauPlus.hh"
52#include "G4TauMinus.hh"
53#include "G4Material.hh"
54#include "G4Step.hh"
55#include "G4LossTableManager.hh"
56#include "G4Exp.hh"
57
58//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
59
60using namespace std;
61
63 G4ProcessType type):G4VDiscreteProcess (processName, type)
64{
65 //e+ Energy threshold
66 if(processName == "AnnihiToTauPair") {
68 part1 = G4TauPlus::TauPlus();
69 part2 = G4TauMinus::TauMinus();
70 fInfo = "e+e->tau+tau-";
71 } else {
73 part1 = G4MuonPlus::MuonPlus();
74 part2 = G4MuonMinus::MuonMinus();
75 }
76 fMass = part1->GetPDGMass();
77 fLowEnergyLimit =
78 2.*fMass*fMass/CLHEP::electron_mass_c2 - CLHEP::electron_mass_c2;
79
80 //model is ok up to 1000 TeV due to neglected Z-interference
81 fHighEnergyLimit = 1000.*TeV;
82
83 fCurrentSigma = 0.0;
84 fCrossSecFactor = 1.;
86 fManager->Register(this);
87}
88
89//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
90
92{
93 fManager->DeRegister(this);
94}
95
96//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
97
99{
100 return ( &particle == G4Positron::Positron() );
101}
102
103//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
104
106{
108}
109
110//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
111
113// Set the factor to artificially increase the cross section
114{
115 fCrossSecFactor = fac;
116 //G4cout << "The cross section for AnnihiToMuPair is artificially "
117 // << "increased by the CrossSecFactor=" << fCrossSecFactor << G4endl;
118}
119
120//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
121
123// Calculates the microscopic cross section in GEANT4 internal units.
124// It gives a good description from threshold to 1000 GeV
125{
126 G4double rmuon = CLHEP::elm_coupling/fMass; //classical particle radius
127 G4double sig0 = CLHEP::pi*rmuon*rmuon/3.; //constant in crossSection
128 const G4double pial = CLHEP::pi*CLHEP::fine_structure_const; // pi * alphaQED
129
130 if (e <= fLowEnergyLimit) return 0.0;
131
132 const G4double xi = fLowEnergyLimit/e;
133 const G4double piaxi = pial * std::sqrt(xi);
134 G4double sigma = sig0 * xi * (1. + xi*0.5);
135 //G4cout << "### xi= " << xi << " piaxi=" << piaxi << G4endl;
136
137 // argument of the exponent below 0.1 or above 10
138 // Sigma per electron * number of electrons per atom
139 if(xi <= 1.0 - 100*piaxi*piaxi) {
140 sigma *= std::sqrt(1.0 - xi);
141 } else if( xi >= 1.0 - 0.01*piaxi*piaxi) {
142 sigma *= piaxi;
143 } else {
144 sigma *= piaxi/(1. - G4Exp( -piaxi/std::sqrt(1-xi) ));
145 }
146 //G4cout << "### sigma= " << sigma << G4endl;
147 return sigma;
148}
149
150//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
151
153 const G4double Z)
154{
155 return ComputeCrossSectionPerElectron(energy)*Z;
156}
157
158//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
159
161 const G4Material* aMaterial)
162{
164}
165
166//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
167
170// returns the positron mean free path in GEANT4 internal units
171{
172 const G4DynamicParticle* aDynamicPositron = aTrack.GetDynamicParticle();
173 G4double energy = aDynamicPositron->GetTotalEnergy();
174 const G4Material* aMaterial = aTrack.GetMaterial();
175
176 // cross section before step
177 fCurrentSigma = CrossSectionPerVolume(energy, aMaterial);
178
179 // increase the CrossSection by CrossSecFactor (default 1)
180 return (fCurrentSigma > 0.0) ? 1.0/(fCurrentSigma*fCrossSecFactor) : DBL_MAX;
181}
182
183//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
184
186 const G4Step& aStep)
187//
188// generation of e+e- -> mu+mu-
189//
190{
192
193 // current Positron energy and direction, return if energy too low
194 const G4DynamicParticle *aDynamicPositron = aTrack.GetDynamicParticle();
195 const G4double Mele = CLHEP::electron_mass_c2;
196 G4double Epos = aDynamicPositron->GetTotalEnergy();
197 G4double xs = CrossSectionPerVolume(Epos, aTrack.GetMaterial());
198
199 // test of cross section
200 if(xs > 0.0 && fCurrentSigma*G4UniformRand() > xs)
201 {
202 return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
203 }
204
205 const G4ThreeVector PosiDirection = aDynamicPositron->GetMomentumDirection();
206 G4double xi = fLowEnergyLimit/Epos; // xi is always less than 1,
207 // goes to 0 at high Epos
208
209 // generate cost; probability function 1+cost**2 at high Epos
210 //
211 G4double cost;
212 do { cost = 2.*G4UniformRand()-1.; }
213 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
214 while (2.*G4UniformRand() > 1.+xi+cost*cost*(1.-xi) );
215 G4double sint = sqrt(1.-cost*cost);
216
217 // generate phi
218 //
219 G4double phi = 2.*CLHEP::pi*G4UniformRand();
220
221 G4double Ecm = std::sqrt(0.5*Mele*(Epos+Mele));
222 G4double Pcm = std::sqrt(Ecm*Ecm - fMass*fMass);
223 G4double beta = std::sqrt((Epos-Mele)/(Epos+Mele));
224 G4double gamma = Ecm/Mele;
225 G4double Pt = Pcm*sint;
226
227 // energy and momentum of the muons in the Lab
228 //
229 G4double EmuPlus = gamma*(Ecm + cost*beta*Pcm);
230 G4double EmuMinus = gamma*(Ecm - cost*beta*Pcm);
231 G4double PmuPlusZ = gamma*(beta*Ecm + cost*Pcm);
232 G4double PmuMinusZ = gamma*(beta*Ecm - cost*Pcm);
233 G4double PmuPlusX = Pt*std::cos(phi);
234 G4double PmuPlusY = Pt*std::sin(phi);
235 G4double PmuMinusX =-PmuPlusX;
236 G4double PmuMinusY =-PmuPlusY;
237 // absolute momenta
238 G4double PmuPlus = std::sqrt(Pt*Pt+PmuPlusZ *PmuPlusZ );
239 G4double PmuMinus = std::sqrt(Pt*Pt+PmuMinusZ*PmuMinusZ);
240
241 // mu+ mu- directions for Positron in z-direction
242 //
244 MuPlusDirection(PmuPlusX/PmuPlus, PmuPlusY/PmuPlus, PmuPlusZ/PmuPlus);
246 MuMinusDirection(PmuMinusX/PmuMinus,PmuMinusY/PmuMinus,PmuMinusZ/PmuMinus);
247
248 // rotate to actual Positron direction
249 //
250 MuPlusDirection.rotateUz(PosiDirection);
251 MuMinusDirection.rotateUz(PosiDirection);
252
254
255 // create G4DynamicParticle object for the particle1
256 G4DynamicParticle* aParticle1 =
257 new G4DynamicParticle(part1, MuPlusDirection, EmuPlus-fMass);
258 aParticleChange.AddSecondary(aParticle1);
259 // create G4DynamicParticle object for the particle2
260 G4DynamicParticle* aParticle2 =
261 new G4DynamicParticle(part2, MuMinusDirection, EmuMinus-fMass);
262 aParticleChange.AddSecondary(aParticle2);
263
264 // Kill the incident positron
265 //
268
269 return &aParticleChange;
270}
271
272//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
273
275{
276 G4String comments = fInfo + " annihilation, atomic e- at rest, SubType=";
277 G4cout << G4endl << GetProcessName() << ": " << comments
279 G4cout << " threshold at " << fLowEnergyLimit/CLHEP::GeV << " GeV"
280 << " good description up to "
281 << fHighEnergyLimit/CLHEP::TeV << " TeV for all Z." << G4endl;
282}
283
284//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
@ fAnnihilationToTauTau
@ fAnnihilationToMuMu
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4ForceCondition
G4ProcessType
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
const G4int Z[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
G4double GetMeanFreePath(const G4Track &aTrack, G4double previousStepSize, G4ForceCondition *) override
G4double ComputeCrossSectionPerElectron(const G4double energy)
~G4AnnihiToMuPair() override
void BuildPhysicsTable(const G4ParticleDefinition &) override
G4bool IsApplicable(const G4ParticleDefinition &) override
void SetCrossSecFactor(G4double fac)
G4double ComputeCrossSectionPerAtom(const G4double energy, const G4double Z)
G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep) override
G4AnnihiToMuPair(const G4String &processName="AnnihiToMuPair", G4ProcessType type=fElectromagnetic)
G4double CrossSectionPerVolume(G4double positronEnergy, const G4Material *)
const G4ThreeVector & GetMomentumDirection() const
G4double GetTotalEnergy() const
static G4LossTableManager * Instance()
void DeRegister(G4VEnergyLossProcess *p)
void Register(G4VEnergyLossProcess *p)
G4double GetTotNbOfElectPerVolume() const
Definition: G4Material.hh:207
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:99
static G4MuonPlus * MuonPlus()
Definition: G4MuonPlus.cc:98
void AddSecondary(G4Track *aSecondary)
void Initialize(const G4Track &) override
void ProposeEnergy(G4double finalEnergy)
static G4Positron * Positron()
Definition: G4Positron.cc:93
Definition: G4Step.hh:62
static G4TauMinus * TauMinus()
Definition: G4TauMinus.cc:134
static G4TauPlus * TauPlus()
Definition: G4TauPlus.cc:133
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeTrackStatus(G4TrackStatus status)
void SetNumberOfSecondaries(G4int totSecondaries)
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:331
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:410
G4int GetProcessSubType() const
Definition: G4VProcess.hh:404
const G4String & GetProcessName() const
Definition: G4VProcess.hh:386
#define DBL_MAX
Definition: templates.hh:62