66 if(processName ==
"AnnihiToTauPair") {
70 fInfo =
"e+e->tau+tau-";
78 2.*fMass*fMass/CLHEP::electron_mass_c2 - CLHEP::electron_mass_c2;
81 fHighEnergyLimit = 1000.*TeV;
115 fCrossSecFactor = fac;
126 G4double rmuon = CLHEP::elm_coupling/fMass;
127 G4double sig0 = CLHEP::pi*rmuon*rmuon/3.;
128 const G4double pial = CLHEP::pi*CLHEP::fine_structure_const;
130 if (e <= fLowEnergyLimit)
return 0.0;
132 const G4double xi = fLowEnergyLimit/e;
133 const G4double piaxi = pial * std::sqrt(xi);
134 G4double sigma = sig0 * xi * (1. + xi*0.5);
139 if(xi <= 1.0 - 100*piaxi*piaxi) {
140 sigma *= std::sqrt(1.0 - xi);
141 }
else if( xi >= 1.0 - 0.01*piaxi*piaxi) {
144 sigma *= piaxi/(1. -
G4Exp( -piaxi/std::sqrt(1-xi) ));
180 return (fCurrentSigma > 0.0) ? 1.0/(fCurrentSigma*fCrossSecFactor) :
DBL_MAX;
195 const G4double Mele = CLHEP::electron_mass_c2;
221 G4double Ecm = std::sqrt(0.5*Mele*(Epos+Mele));
222 G4double Pcm = std::sqrt(Ecm*Ecm - fMass*fMass);
223 G4double beta = std::sqrt((Epos-Mele)/(Epos+Mele));
229 G4double EmuPlus = gamma*(Ecm + cost*beta*Pcm);
230 G4double EmuMinus = gamma*(Ecm - cost*beta*Pcm);
231 G4double PmuPlusZ = gamma*(beta*Ecm + cost*Pcm);
232 G4double PmuMinusZ = gamma*(beta*Ecm - cost*Pcm);
233 G4double PmuPlusX = Pt*std::cos(phi);
234 G4double PmuPlusY = Pt*std::sin(phi);
238 G4double PmuPlus = std::sqrt(Pt*Pt+PmuPlusZ *PmuPlusZ );
239 G4double PmuMinus = std::sqrt(Pt*Pt+PmuMinusZ*PmuMinusZ);
244 MuPlusDirection(PmuPlusX/PmuPlus, PmuPlusY/PmuPlus, PmuPlusZ/PmuPlus);
246 MuMinusDirection(PmuMinusX/PmuMinus,PmuMinusY/PmuMinus,PmuMinusZ/PmuMinus);
250 MuPlusDirection.
rotateUz(PosiDirection);
251 MuMinusDirection.
rotateUz(PosiDirection);
276 G4String comments = fInfo +
" annihilation, atomic e- at rest, SubType=";
279 G4cout <<
" threshold at " << fLowEnergyLimit/CLHEP::GeV <<
" GeV"
280 <<
" good description up to "
281 << fHighEnergyLimit/CLHEP::TeV <<
" TeV for all Z." <<
G4endl;
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
G4GLOB_DLL std::ostream G4cout
Hep3Vector & rotateUz(const Hep3Vector &)
G4double GetMeanFreePath(const G4Track &aTrack, G4double previousStepSize, G4ForceCondition *) override
G4double ComputeCrossSectionPerElectron(const G4double energy)
~G4AnnihiToMuPair() override
void BuildPhysicsTable(const G4ParticleDefinition &) override
G4bool IsApplicable(const G4ParticleDefinition &) override
void SetCrossSecFactor(G4double fac)
void PrintInfoDefinition()
G4double ComputeCrossSectionPerAtom(const G4double energy, const G4double Z)
G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep) override
G4AnnihiToMuPair(const G4String &processName="AnnihiToMuPair", G4ProcessType type=fElectromagnetic)
G4double CrossSectionPerVolume(G4double positronEnergy, const G4Material *)
const G4ThreeVector & GetMomentumDirection() const
G4double GetTotalEnergy() const
static G4LossTableManager * Instance()
void DeRegister(G4VEnergyLossProcess *p)
void Register(G4VEnergyLossProcess *p)
G4double GetTotNbOfElectPerVolume() const
static G4MuonMinus * MuonMinus()
static G4MuonPlus * MuonPlus()
void AddSecondary(G4Track *aSecondary)
void Initialize(const G4Track &) override
void ProposeEnergy(G4double finalEnergy)
G4double GetPDGMass() const
static G4Positron * Positron()
static G4TauMinus * TauMinus()
static G4TauPlus * TauPlus()
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeTrackStatus(G4TrackStatus status)
void SetNumberOfSecondaries(G4int totSecondaries)
G4ParticleChange aParticleChange
void SetProcessSubType(G4int)
G4int GetProcessSubType() const
const G4String & GetProcessName() const