Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4Nucleus.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// original by H.P. Wellisch
29// modified by J.L. Chuma, TRIUMF, 19-Nov-1996
30// last modified: 27-Mar-1997
31// J.P.Wellisch: 23-Apr-97: minor simplifications
32// modified by J.L.Chuma 24-Jul-97 to set the total momentum in Cinema and
33// EvaporationEffects
34// modified by J.L.Chuma 21-Oct-97 put std::abs() around the totalE^2-mass^2
35// in calculation of total momentum in
36// Cinema and EvaporationEffects
37// Chr. Volcker, 10-Nov-1997: new methods and class variables.
38// HPW added utilities for low energy neutron transport. (12.04.1998)
39// M.G. Pia, 2 Oct 1998: modified GetFermiMomentum to avoid memory leaks
40// G.Folger, spring 2010: add integer A/Z interface
41// A. Ribon, summer 2015: migrated to G4Exp and G4Log
42// A. Ribon, autumn 2021: extended to hypernuclei
43
44#include "G4Nucleus.hh"
45#include "G4NucleiProperties.hh"
47#include "G4SystemOfUnits.hh"
48#include "Randomize.hh"
50#include "G4Exp.hh"
51#include "G4Log.hh"
53
54
56 : theA(0), theZ(0), theL(0), aEff(0.0), zEff(0)
57{
58 pnBlackTrackEnergy = 0.0;
59 dtaBlackTrackEnergy = 0.0;
60 pnBlackTrackEnergyfromAnnihilation = 0.0;
61 dtaBlackTrackEnergyfromAnnihilation = 0.0;
62 excitationEnergy = 0.0;
63 momentum = G4ThreeVector(0.,0.,0.);
64 fermiMomentum = 1.52*hbarc/fermi;
65 theTemp = 293.16*kelvin;
66 fIsotope = 0;
67}
68
69G4Nucleus::G4Nucleus( const G4double A, const G4double Z, const G4int numberOfLambdas )
70{
71 SetParameters( A, Z, std::max(numberOfLambdas, 0) );
72 pnBlackTrackEnergy = 0.0;
73 dtaBlackTrackEnergy = 0.0;
74 pnBlackTrackEnergyfromAnnihilation = 0.0;
75 dtaBlackTrackEnergyfromAnnihilation = 0.0;
76 excitationEnergy = 0.0;
77 momentum = G4ThreeVector(0.,0.,0.);
78 fermiMomentum = 1.52*hbarc/fermi;
79 theTemp = 293.16*kelvin;
80 fIsotope = 0;
81}
82
83G4Nucleus::G4Nucleus( const G4int A, const G4int Z, const G4int numberOfLambdas )
84{
85 SetParameters( A, Z, std::max(numberOfLambdas, 0) );
86 pnBlackTrackEnergy = 0.0;
87 dtaBlackTrackEnergy = 0.0;
88 pnBlackTrackEnergyfromAnnihilation = 0.0;
89 dtaBlackTrackEnergyfromAnnihilation = 0.0;
90 excitationEnergy = 0.0;
91 momentum = G4ThreeVector(0.,0.,0.);
92 fermiMomentum = 1.52*hbarc/fermi;
93 theTemp = 293.16*kelvin;
94 fIsotope = 0;
95}
96
98{
99 ChooseParameters( aMaterial );
100 pnBlackTrackEnergy = 0.0;
101 dtaBlackTrackEnergy = 0.0;
102 pnBlackTrackEnergyfromAnnihilation = 0.0;
103 dtaBlackTrackEnergyfromAnnihilation = 0.0;
104 excitationEnergy = 0.0;
105 momentum = G4ThreeVector(0.,0.,0.);
106 fermiMomentum = 1.52*hbarc/fermi;
107 theTemp = aMaterial->GetTemperature();
108 fIsotope = 0;
109}
110
112
113
114//-------------------------------------------------------------------------------------------------
115// SVT (Sampling of the Velocity of the Target nucleus) method, L. Thulliez (CEA-Saclay) 2021/05/04
116//-------------------------------------------------------------------------------------------------
119{
120 // If E_neutron <= 400*kB*T (400 is a common value encounter in MC neutron transport code)
121 // Then apply the Sampling ot the Velocity of the Target (SVT) method
122 // Else consider the target nucleus being without motion
123 G4double E_threshold = 400.0*8.617333262E-11*temp; // 400*kBoltzman*T
124 G4double E_neutron = 0.5*aVelocity.mag2()*G4Neutron::Neutron()->GetPDGMass(); // E=0.5*m*v2
125
126 G4ReactionProduct result;
127 result.SetMass(aMass*G4Neutron::Neutron()->GetPDGMass());
128
129 if ( E_neutron <= E_threshold ) {
130
131 // Beta = sqrt(m/2kT)
132 G4double beta = std::sqrt(result.GetMass()/(2.*8.617333262E-11*temp)); // kT E-5[eV] mass E-11[MeV] => beta in [m/s]-1
133
134 // Neutron speed vn
135 G4double vN_norm = aVelocity.mag();
136 G4double vN_norm2 = vN_norm*vN_norm;
137 G4double y = beta*vN_norm;
138
139 // Normalize neutron velocity
140 aVelocity = (1./vN_norm)*aVelocity;
141
142 // Sample target speed
143 G4double x2;
144 G4double randThreshold;
145 G4double vT_norm, vT_norm2, mu; //theta, val1, val2,
146 G4double acceptThreshold;
147 G4double vRelativeSpeed;
148 G4double cdf0 = 2./(2.+std::sqrt(CLHEP::pi)*y);
149
150 do {
151 // Sample the target velocity vT in the laboratory frame
152 if ( G4UniformRand() < cdf0 ) {
153 // Sample in C45 from https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-9721.pdf
154 x2 = -std::log(G4UniformRand()*G4UniformRand());
155 } else {
156 // Sample in C61 from https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-9721.pdf
157 G4double ampl = std::cos(CLHEP::pi/2.0 * G4UniformRand());
158 x2 = -std::log(G4UniformRand()) - std::log(G4UniformRand())*ampl*ampl;
159 }
160
161 vT_norm = std::sqrt(x2)/beta;
162 vT_norm2 = vT_norm*vT_norm;
163
164 // Sample cosine between the incident neutron and the target in the laboratory frame
165 mu = 2*G4UniformRand() - 1;
166
167 // Define acceptance threshold
168 vRelativeSpeed = std::sqrt(vN_norm2 + vT_norm2 - 2*vN_norm*vT_norm*mu);
169 acceptThreshold = vRelativeSpeed/(vN_norm + vT_norm);
170 randThreshold = G4UniformRand();
171 } while ( randThreshold >= acceptThreshold );
172
173 // Get target nucleus direction from the neutron direction and the relative angle between target nucleus and neutron (mu)
174 G4double cosTh = mu;
175 G4ThreeVector uNorm = aVelocity;
176
177 G4double sinTh = std::sqrt(1. - cosTh*cosTh);
178
179 // Sample randomly the phi angle between the neutron veloicty and the target velocity
180 G4double phi = CLHEP::twopi*G4UniformRand();
181 G4double sinPhi = std::sin(phi);
182 G4double cosPhi = std::cos(phi);
183
184 // Find orthogonal vector to aVelocity - solve equation xx' + yy' + zz' = 0
185 G4ThreeVector ortho(1,1,1);
186 if ( uNorm[0] ) ortho[0] = -(uNorm[1]+uNorm[2])/uNorm[0];
187 else if ( uNorm[1] ) ortho[1] = -(uNorm[0]+uNorm[2])/uNorm[1];
188 else if ( uNorm[2] ) ortho[2] = -(uNorm[0]+uNorm[1])/uNorm[2];
189
190 // Normalize the vector
191 ortho = (1/ortho.mag())*ortho;
192
193 // Find vector to draw a plan perpendicular to uNorm (i.e neutron velocity) with vectors ortho & orthoComp
194 G4ThreeVector orthoComp( uNorm[1]*ortho[2] - ortho[1]*uNorm[2],
195 uNorm[2]*ortho[0] - ortho[2]*uNorm[0],
196 uNorm[0]*ortho[1] - ortho[0]*uNorm[1] );
197
198 // Find the direction of the target velocity in the laboratory frame
199 G4ThreeVector directionTarget( cosTh*uNorm[0] + sinTh*(cosPhi*orthoComp[0] + sinPhi*ortho[0]),
200 cosTh*uNorm[1] + sinTh*(cosPhi*orthoComp[1] + sinPhi*ortho[1]),
201 cosTh*uNorm[2] + sinTh*(cosPhi*orthoComp[2] + sinPhi*ortho[2]) );
202
203 // Normalize directionTarget
204 directionTarget = (1/directionTarget.mag())*directionTarget;
205
206 // Set momentum
207 G4double px = result.GetMass()*vT_norm*directionTarget[0];
208 G4double py = result.GetMass()*vT_norm*directionTarget[1];
209 G4double pz = result.GetMass()*vT_norm*directionTarget[2];
210 result.SetMomentum(px, py, pz);
211
212 G4double tMom = std::sqrt(px*px+py*py+pz*pz);
213 G4double tEtot = std::sqrt((tMom+result.GetMass())*(tMom+result.GetMass())
214 - 2.*tMom*result.GetMass());
215
216 if ( tEtot/result.GetMass() - 1. > 0.001 ) {
217 // use relativistic energy for higher energies
218 result.SetTotalEnergy(tEtot);
219 } else {
220 // use p**2/2M for lower energies (to preserve precision?)
221 result.SetKineticEnergy(tMom*tMom/(2.*result.GetMass()));
222 }
223
224 } else { // target nucleus considered as being without motion
225
226 result.SetMomentum(0., 0., 0.);
227 result.SetKineticEnergy(0.);
228
229 }
230
231 return result;
232}
233
234
237{
238 G4double currentTemp = temp;
239 if (currentTemp < 0) currentTemp = theTemp;
240 G4ReactionProduct theTarget;
241 theTarget.SetMass(targetMass*G4Neutron::Neutron()->GetPDGMass());
242 G4double px, py, pz;
243 px = GetThermalPz(theTarget.GetMass(), currentTemp);
244 py = GetThermalPz(theTarget.GetMass(), currentTemp);
245 pz = GetThermalPz(theTarget.GetMass(), currentTemp);
246 theTarget.SetMomentum(px, py, pz);
247 G4double tMom = std::sqrt(px*px+py*py+pz*pz);
248 G4double tEtot = std::sqrt((tMom+theTarget.GetMass())*
249 (tMom+theTarget.GetMass())-
250 2.*tMom*theTarget.GetMass());
251 // if(1-tEtot/theTarget.GetMass()>0.001) this line incorrect (Bug report 1911)
252 if (tEtot/theTarget.GetMass() - 1. > 0.001) {
253 // use relativistic energy for higher energies
254 theTarget.SetTotalEnergy(tEtot);
255
256 } else {
257 // use p**2/2M for lower energies (to preserve precision?)
258 theTarget.SetKineticEnergy(tMom*tMom/(2.*theTarget.GetMass()));
259 }
260 return theTarget;
261}
262
263
264void
266{
267 G4double random = G4UniformRand();
268 G4double sum = aMaterial->GetTotNbOfAtomsPerVolume();
269 const G4ElementVector* theElementVector = aMaterial->GetElementVector();
270 G4double running(0);
271 // G4Element* element(0);
272 const G4Element* element = (*theElementVector)[aMaterial->GetNumberOfElements()-1];
273
274 for (unsigned int i = 0; i < aMaterial->GetNumberOfElements(); ++i) {
275 running += aMaterial->GetVecNbOfAtomsPerVolume()[i];
276 if (running > random*sum) {
277 element = (*theElementVector)[i];
278 break;
279 }
280 }
281
282 if (element->GetNumberOfIsotopes() > 0) {
283 G4double randomAbundance = G4UniformRand();
284 G4double sumAbundance = element->GetRelativeAbundanceVector()[0];
285 unsigned int iso=0;
286 while (iso < element->GetNumberOfIsotopes() && /* Loop checking, 02.11.2015, A.Ribon */
287 sumAbundance < randomAbundance) {
288 ++iso;
289 sumAbundance += element->GetRelativeAbundanceVector()[iso];
290 }
291 theA=element->GetIsotope(iso)->GetN();
292 theZ=element->GetIsotope(iso)->GetZ();
293 theL=0;
294 aEff=theA;
295 zEff=theZ;
296 } else {
297 aEff = element->GetN();
298 zEff = element->GetZ();
299 theZ = G4int(zEff + 0.5);
300 theA = G4int(aEff + 0.5);
301 theL=0;
302 }
303}
304
305
306void
307G4Nucleus::SetParameters( const G4double A, const G4double Z, const G4int numberOfLambdas )
308{
309 theZ = G4lrint(Z);
310 theA = G4lrint(A);
311 theL = std::max(numberOfLambdas, 0);
312 if (theA<1 || theZ<0 || theZ>theA) {
313 throw G4HadronicException(__FILE__, __LINE__,
314 "G4Nucleus::SetParameters called with non-physical parameters");
315 }
316 aEff = A; // atomic weight
317 zEff = Z; // atomic number
318 fIsotope = 0;
319}
320
321
322void
323G4Nucleus::SetParameters( const G4int A, const G4int Z, const G4int numberOfLambdas )
324{
325 theZ = Z;
326 theA = A;
327 theL = std::max(numberOfLambdas, 0);
328 if( theA<1 || theZ<0 || theZ>theA )
329 {
330 throw G4HadronicException(__FILE__, __LINE__,
331 "G4Nucleus::SetParameters called with non-physical parameters");
332 }
333 aEff = A; // atomic weight
334 zEff = Z; // atomic number
335 fIsotope = 0;
336}
337
338
341{
342 // choose a proton or a neutron (or a lamba if a hypernucleus) as the target particle
343 G4DynamicParticle *targetParticle = new G4DynamicParticle;
344 const G4double rnd = G4UniformRand();
345 if ( rnd < zEff/aEff ) {
346 targetParticle->SetDefinition( G4Proton::Proton() );
347 } else if ( rnd < (zEff + theL*1.0)/aEff ) {
348 targetParticle->SetDefinition( G4Lambda::Lambda() );
349 } else {
350 targetParticle->SetDefinition( G4Neutron::Neutron() );
351 }
352 return targetParticle;
353}
354
355
357G4Nucleus::AtomicMass( const G4double A, const G4double Z, const G4int numberOfLambdas ) const
358{
359 // Now returns (atomic mass - electron masses)
360 if ( numberOfLambdas > 0 ) {
361 return G4HyperNucleiProperties::GetNuclearMass(G4int(A), G4int(Z), numberOfLambdas);
362 } else {
364 }
365}
366
367
369G4Nucleus::AtomicMass( const G4int A, const G4int Z, const G4int numberOfLambdas ) const
370{
371 // Now returns (atomic mass - electron masses)
372 if ( numberOfLambdas > 0 ) {
373 return G4HyperNucleiProperties::GetNuclearMass(A, Z, numberOfLambdas);
374 } else {
376 }
377}
378
379
381G4Nucleus::GetThermalPz( const G4double mass, const G4double temp ) const
382{
383 G4double result = G4RandGauss::shoot();
384 result *= std::sqrt(k_Boltzmann*temp*mass); // Das ist impuls (Pz),
385 // nichtrelativistische rechnung
386 // Maxwell verteilung angenommen
387 return result;
388}
389
390
393{
394 // derived from original FORTRAN code EXNU by H. Fesefeldt (10-Dec-1986)
395 //
396 // Nuclear evaporation as function of atomic number
397 // and kinetic energy (MeV) of primary particle
398 //
399 // returns kinetic energy (MeV)
400 //
401 if( aEff < 1.5 )
402 {
403 pnBlackTrackEnergy = dtaBlackTrackEnergy = 0.0;
404 return 0.0;
405 }
406 G4double ek = kineticEnergy/GeV;
407 G4float ekin = std::min( 4.0, std::max( 0.1, ek ) );
408 const G4float atno = std::min( 120., aEff );
409 const G4float gfa = 2.0*((aEff-1.0)/70.)*G4Exp(-(aEff-1.0)/70.);
410 //
411 // 0.35 value at 1 GeV
412 // 0.05 value at 0.1 GeV
413 //
414 G4float cfa = std::max( 0.15, 0.35 + ((0.35-0.05)/2.3)*G4Log(ekin) );
415 G4float exnu = 7.716 * cfa * G4Exp(-cfa)
416 * ((atno-1.0)/120.)*G4Exp(-(atno-1.0)/120.);
417 G4float fpdiv = std::max( 0.5, 1.0-0.25*ekin*ekin );
418 //
419 // pnBlackTrackEnergy is the kinetic energy (in GeV) available for
420 // proton/neutron black track particles
421 // dtaBlackTrackEnergy is the kinetic energy (in GeV) available for
422 // deuteron/triton/alpha black track particles
423 //
424 pnBlackTrackEnergy = exnu*fpdiv;
425 dtaBlackTrackEnergy = exnu*(1.0-fpdiv);
426
427 if( G4int(zEff+0.1) != 82 )
428 {
429 G4double ran1 = -6.0;
430 G4double ran2 = -6.0;
431 for( G4int i=0; i<12; ++i )
432 {
433 ran1 += G4UniformRand();
434 ran2 += G4UniformRand();
435 }
436 pnBlackTrackEnergy *= 1.0 + ran1*gfa;
437 dtaBlackTrackEnergy *= 1.0 + ran2*gfa;
438 }
439 pnBlackTrackEnergy = std::max( 0.0, pnBlackTrackEnergy );
440 dtaBlackTrackEnergy = std::max( 0.0, dtaBlackTrackEnergy );
441 while( pnBlackTrackEnergy+dtaBlackTrackEnergy >= ek ) /* Loop checking, 02.11.2015, A.Ribon */
442 {
443 pnBlackTrackEnergy *= 1.0 - 0.5*G4UniformRand();
444 dtaBlackTrackEnergy *= 1.0 - 0.5*G4UniformRand();
445 }
446 //G4cout << "EvaporationEffects "<<kineticEnergy<<" "
447 // <<pnBlackTrackEnergy+dtaBlackTrackEnergy<< G4endl;
448 return (pnBlackTrackEnergy+dtaBlackTrackEnergy)*GeV;
449}
450
451
454{
455 // Nuclear evaporation as a function of atomic number and kinetic
456 // energy (MeV) of primary particle. Modified for annihilation effects.
457 //
458 if( aEff < 1.5 || ekOrg < 0.)
459 {
460 pnBlackTrackEnergyfromAnnihilation = 0.0;
461 dtaBlackTrackEnergyfromAnnihilation = 0.0;
462 return 0.0;
463 }
464 G4double ek = kineticEnergy/GeV;
465 G4float ekin = std::min( 4.0, std::max( 0.1, ek ) );
466 const G4float atno = std::min( 120., aEff );
467 const G4float gfa = 2.0*((aEff-1.0)/70.)*G4Exp(-(aEff-1.0)/70.);
468
469 G4float cfa = std::max( 0.15, 0.35 + ((0.35-0.05)/2.3)*G4Log(ekin) );
470 G4float exnu = 7.716 * cfa * G4Exp(-cfa)
471 * ((atno-1.0)/120.)*G4Exp(-(atno-1.0)/120.);
472 G4float fpdiv = std::max( 0.5, 1.0-0.25*ekin*ekin );
473
474 pnBlackTrackEnergyfromAnnihilation = exnu*fpdiv;
475 dtaBlackTrackEnergyfromAnnihilation = exnu*(1.0-fpdiv);
476
477 G4double ran1 = -6.0;
478 G4double ran2 = -6.0;
479 for( G4int i=0; i<12; ++i ) {
480 ran1 += G4UniformRand();
481 ran2 += G4UniformRand();
482 }
483 pnBlackTrackEnergyfromAnnihilation *= 1.0 + ran1*gfa;
484 dtaBlackTrackEnergyfromAnnihilation *= 1.0 + ran2*gfa;
485
486 pnBlackTrackEnergyfromAnnihilation = std::max( 0.0, pnBlackTrackEnergyfromAnnihilation);
487 dtaBlackTrackEnergyfromAnnihilation = std::max( 0.0, dtaBlackTrackEnergyfromAnnihilation);
488 G4double blackSum = pnBlackTrackEnergyfromAnnihilation+dtaBlackTrackEnergyfromAnnihilation;
489 if (blackSum >= ekOrg/GeV) {
490 pnBlackTrackEnergyfromAnnihilation *= ekOrg/GeV/blackSum;
491 dtaBlackTrackEnergyfromAnnihilation *= ekOrg/GeV/blackSum;
492 }
493
494 return (pnBlackTrackEnergyfromAnnihilation+dtaBlackTrackEnergyfromAnnihilation)*GeV;
495}
496
497
500{
501 // derived from original FORTRAN code CINEMA by H. Fesefeldt (14-Oct-1987)
502 //
503 // input: kineticEnergy (MeV)
504 // returns modified kinetic energy (MeV)
505 //
506 static const G4double expxu = 82.; // upper bound for arg. of exp
507 static const G4double expxl = -expxu; // lower bound for arg. of exp
508
509 G4double ek = kineticEnergy/GeV;
510 G4double ekLog = G4Log( ek );
511 G4double aLog = G4Log( aEff );
512 G4double em = std::min( 1.0, 0.2390 + 0.0408*aLog*aLog );
513 G4double temp1 = -ek * std::min( 0.15, 0.0019*aLog*aLog*aLog );
514 G4double temp2 = G4Exp( std::max( expxl, std::min( expxu, -(ekLog-em)*(ekLog-em)*2.0 ) ) );
515 G4double result = 0.0;
516 if( std::abs( temp1 ) < 1.0 )
517 {
518 if( temp2 > 1.0e-10 )result = temp1*temp2;
519 }
520 else result = temp1*temp2;
521 if( result < -ek )result = -ek;
522 return result*GeV;
523}
524
525
527{
528 // chv: .. we assume zero temperature!
529
530 // momentum is equally distributed in each phasespace volume dpx, dpy, dpz.
531 G4double ranflat1=
532 G4RandFlat::shoot((G4double)0.,(G4double)fermiMomentum);
533 G4double ranflat2=
534 G4RandFlat::shoot((G4double)0.,(G4double)fermiMomentum);
535 G4double ranflat3=
536 G4RandFlat::shoot((G4double)0.,(G4double)fermiMomentum);
537 G4double ranmax = (ranflat1>ranflat2? ranflat1: ranflat2);
538 ranmax = (ranmax>ranflat3? ranmax : ranflat3);
539
540 // Isotropic momentum distribution
541 G4double costheta = 2.*G4UniformRand() - 1.0;
542 G4double sintheta = std::sqrt(1.0 - costheta*costheta);
543 G4double phi = 2.0*pi*G4UniformRand();
544
545 G4double pz=costheta*ranmax;
546 G4double px=sintheta*std::cos(phi)*ranmax;
547 G4double py=sintheta*std::sin(phi)*ranmax;
548 G4ThreeVector p(px,py,pz);
549 return p;
550}
551
552
554{
555 // needs implementation!
556 return nullptr;
557}
558
559
561{
562 momentum+=(aMomentum);
563}
564
565
567{
568 excitationEnergy+=anEnergy;
569}
570
571 /* end of file */
572
std::vector< const G4Element * > G4ElementVector
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4double G4Log(G4double x)
Definition: G4Log.hh:227
std::vector< G4ReactionProduct * > G4ReactionProductVector
CLHEP::Hep3Vector G4ThreeVector
float G4float
Definition: G4Types.hh:84
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
#define G4UniformRand()
Definition: Randomize.hh:52
double mag2() const
double mag() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4double * GetRelativeAbundanceVector() const
Definition: G4Element.hh:167
G4double GetZ() const
Definition: G4Element.hh:131
const G4Isotope * GetIsotope(G4int iso) const
Definition: G4Element.hh:170
size_t GetNumberOfIsotopes() const
Definition: G4Element.hh:159
G4double GetN() const
Definition: G4Element.hh:135
static G4double GetNuclearMass(G4int A, G4int Z, G4int L)
G4int GetZ() const
Definition: G4Isotope.hh:90
G4int GetN() const
Definition: G4Isotope.hh:93
static G4Lambda * Lambda()
Definition: G4Lambda.cc:107
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:185
G4double GetTotNbOfAtomsPerVolume() const
Definition: G4Material.hh:204
G4double GetTemperature() const
Definition: G4Material.hh:177
size_t GetNumberOfElements() const
Definition: G4Material.hh:181
const G4double * GetVecNbOfAtomsPerVolume() const
Definition: G4Material.hh:201
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
static G4double GetNuclearMass(const G4double A, const G4double Z)
void AddExcitationEnergy(G4double anEnergy)
Definition: G4Nucleus.cc:566
G4double GetThermalPz(const G4double mass, const G4double temp) const
Definition: G4Nucleus.cc:381
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:392
void ChooseParameters(const G4Material *aMaterial)
Definition: G4Nucleus.cc:265
G4double AtomicMass(const G4double A, const G4double Z, const G4int numberOfLambdas=0) const
Definition: G4Nucleus.cc:357
G4double AnnihilationEvaporationEffects(G4double kineticEnergy, G4double ekOrg)
Definition: G4Nucleus.cc:453
void SetParameters(const G4double A, const G4double Z, const G4int numberOfLambdas=0)
Definition: G4Nucleus.cc:307
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:499
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:340
G4ReactionProductVector * Fragmentate()
Definition: G4Nucleus.cc:553
G4ReactionProduct GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp=-1) const
Definition: G4Nucleus.cc:118
void AddMomentum(const G4ThreeVector aMomentum)
Definition: G4Nucleus.cc:560
G4ReactionProduct GetThermalNucleus(G4double aMass, G4double temp=-1) const
Definition: G4Nucleus.cc:236
G4ThreeVector GetFermiMomentum()
Definition: G4Nucleus.cc:526
static G4Proton * Proton()
Definition: G4Proton.cc:92
void SetMomentum(const G4double x, const G4double y, const G4double z)
void SetTotalEnergy(const G4double en)
void SetKineticEnergy(const G4double en)
G4double GetMass() const
void SetMass(const G4double mas)
int G4lrint(double ad)
Definition: templates.hh:134