Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4StatDouble.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4StatDouble class implementation
27//
28// Original Author: Giovanni Santin (ESA) - October 2005 in GRAS tool
29// Adapted by: John Apostolakis - November 2011
30// --------------------------------------------------------------------
31#include "G4StatDouble.hh"
32
34
36
38{
39 m_sum_wx = 0.;
40 m_sum_wx2 = 0.;
41 m_n = 0;
42 m_sum_w = 0.;
43 m_sum_w2 = 0.;
44 m_scale = 1.;
45}
46
48{
49 m_sum_wx += value * weight;
50 m_sum_wx2 += value * value * weight;
51 if(m_n < INT_MAX)
52 {
53 ++m_n;
54 }
55 m_sum_w += weight;
56 m_sum_w2 += weight * weight;
57
58 if(weight <= 0.)
59 {
60 G4cout << "[G4StatDouble::fill] WARNING: weight<=0. " << weight << G4endl;
61 }
62}
63
64void G4StatDouble::scale(G4double value) { m_scale = m_scale * value; }
65
67{
68 G4double mean_val = 0.;
69 if(m_sum_w > 0.)
70 {
71 mean_val = m_sum_wx / m_sum_w;
72 }
73 return m_scale * mean_val;
74}
75
77{
78 G4double factor = 0.;
79 // factor to rescale the Mean for the requested number
80 // of events (or sum of weights) ext_sum_w
81
82 if(ext_sum_w > 0)
83 {
84 factor = m_sum_w;
85 factor /= ext_sum_w;
86 }
87 return mean() * factor;
88}
89
91 G4int nn)
92{
93 G4double vrms = 0.0;
94 if(nn > 1)
95 {
96 G4double vmean = ssum_wx / ssum_w;
97 G4double xn = nn;
98 G4double tmp =
99 // from GNU Scientific Library. This part is equivalent to N/(N-1)
100 // when w_i = w
101 // ((m_sum_w * m_sum_w) / (m_sum_w * m_sum_w - m_sum_w2))
102
103 // from NIST "DATAPLOT Reference manual", Page 2-66
104 // http://www.itl.nist.gov/div898/software/dataplot/refman2/ch2/weightsd.pdf
105 // rewritten based on: SUM[w(x-m)^2]/SUM[w] = SUM[wx^2]/SUM[w] - m^2
106 // and dividing it by sqrt[n] to go from rms of distribution to the
107 // rms of the mean value
108
109 (xn / (xn - 1)) * ((ssum_wx2 / ssum_w) - (vmean * vmean));
110
111 tmp = std::max(tmp, 0.0); // this avoids observed computation problem
112 vrms = std::sqrt(tmp);
113 // G4cout << "[G4StatDoubleElement::rms] m_sum_wx: " << m_sum_wx
114 // << " m_sum_wx2: " << m_sum_wx2 << " m_sum_w: " << m_sum_w
115 // << " m_n: " << m_n << " tmp: " << tmp<< " rms: " << rms
116 // << G4endl;
117 // G4cout << "[G4StatDoubleElement::rms] (m_n / (m_n - 1)): " << (xn/(xn -
118 // 1))
119 // << " (m_sum_wx2 / m_sum_w): " << (m_sum_wx2 / m_sum_w)
120 // << " (mean * mean): " << (mean * mean)
121 // << " ((m_sum_wx2 / m_sum_w) - (mean * mean)): "
122 // << ((m_sum_wx2 / m_sum_w) - (mean * mean))
123 // << G4endl;
124 }
125 return vrms * m_scale;
126}
127
129{
130 // this method computes the RMS with "all internal" parameters:
131 // all the sums are the internal ones: m_sum_wx, m_sum_wx2, m_sum_w, m_n
132
133 return rms(m_sum_wx, m_sum_wx2, m_sum_w, m_n);
134}
135
137{
138 // this method computes the RMS with sum_w and n coming from outside:
139 // ext_sum_w and ext_n:
140 // this means that the result is normalised to the external events
141 // it is useful when, given a number ext_n of events with sum of the weights
142 // ext_sum_w, only m_n (with sum of weights m_sum_w) are actually accumulated
143 // in the internal summation (e.g. for a dose variable in a volume, because
144 // only a few particles reach that volume)
145
146 return rms(m_sum_wx, m_sum_wx2, ext_sum_w, ext_n);
147}
148
150{
151 m_n += ptr->n();
152 m_sum_w += ptr->sum_w();
153 m_sum_w2 += ptr->sum_w2();
154 m_sum_wx += ptr->sum_wx();
155 m_sum_wx2 += ptr->sum_wx2();
156}
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
G4double m_sum_wx
Definition: G4StatDouble.hh:95
G4double sum_w() const
Definition: G4StatDouble.hh:86
G4double m_sum_w
Definition: G4StatDouble.hh:98
G4double rms()
G4double m_scale
void add(const G4StatDouble *)
G4double sum_w2() const
Definition: G4StatDouble.hh:87
G4int n() const
Definition: G4StatDouble.hh:85
G4double m_sum_w2
Definition: G4StatDouble.hh:99
G4double mean() const
Definition: G4StatDouble.cc:66
G4double m_sum_wx2
Definition: G4StatDouble.hh:96
void fill(G4double x, G4double weight=1.)
Definition: G4StatDouble.cc:47
G4double sum_wx2() const
Definition: G4StatDouble.hh:89
G4double sum_wx() const
Definition: G4StatDouble.hh:88
void scale(G4double)
Definition: G4StatDouble.cc:64
#define INT_MAX
Definition: templates.hh:90