Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4FermiPhaseSpaceDecay.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// Hadronic Process: Phase space decay for the Fermi BreakUp model
28// by V. Lara
29//
30// Modifications:
31// 01.04.2011 General cleanup by V.Ivanchenko:
32// - IsotropicVector is inlined
33// - Momentum computation return zero or positive value
34// - DumpProblem method is added providing more information
35// - Reduced usage of exotic std functions
36
38
39#include "G4RandomDirection.hh"
40#include "G4Pow.hh"
41
45
47{
48 g4calc = G4Pow::GetInstance();
49}
50
52{}
53
54std::vector<G4LorentzVector*>* G4FermiPhaseSpaceDecay::Decay(G4double M,
55 const std::vector<G4double>& mr) const
56 // Calculates momentum for N fragments (Kopylov's method of sampling is used)
57{
58 std::size_t N = mr.size();
59
60 std::vector<G4LorentzVector*>* P =
61 new std::vector<G4LorentzVector*>(N, nullptr);
62
63 G4double mtot = 0.0;
64 for(std::size_t k=0; k<N; ++k) { mtot += mr[k]; }
65
66 G4double mu = mtot;
67 G4double PFragMagCM = 0.0;
68
69 // Primary mass is above the sum of mass of components
70 G4double Mass = std::max(M, mtot + CLHEP::eV);
71 G4double T = Mass-mtot;
72
73 G4LorentzVector PFragCM(0.0,0.0,0.0,0.0);
74 G4LorentzVector PRestCM(0.0,0.0,0.0,0.0);
75 G4LorentzVector PRestLab(0.0,0.0,0.0,Mass);
76
77 CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine();
78
79 for (G4int k = (G4int)N-1; k>0; --k)
80 {
81 mu -= mr[k];
82 if (k>1) { T *= BetaKopylov(k, rndmEngine); }
83 else { T = 0.0; }
84
85 G4double RestMass = mu + T;
86
87 PFragMagCM = PtwoBody(Mass,mr[k],RestMass);
88
89 // Create a unit vector with a random direction isotropically distributed
90 G4ThreeVector RandVector = PFragMagCM*G4RandomDirection();
91
92 PFragCM.setVect(RandVector);
93 PFragCM.setE(std::sqrt(PFragMagCM*PFragMagCM + mr[k]*mr[k]));
94
95 PRestCM.setVect(-RandVector);
96 PRestCM.setE(std::sqrt(PFragMagCM*PFragMagCM + RestMass*RestMass));
97
98 G4ThreeVector BoostV = PRestLab.boostVector();
99
100 PFragCM.boost(BoostV);
101 (*P)[k] = new G4LorentzVector(PFragCM);
102
103 PRestCM.boost(BoostV);
104 PRestLab = PRestCM;
105
106 Mass = RestMass;
107 }
108
109 (*P)[0] = new G4LorentzVector(PRestLab);
110
111 return P;
112}
113
114G4double G4FermiPhaseSpaceDecay::BetaKopylov(G4int K,
115 CLHEP::HepRandomEngine* rndmEngine) const
116{
117 G4int N = 3*K - 5;
118 G4double xN = (G4double)N;
119 G4double xN1= (G4double)(N + 1);
120 G4double F;
121 // VI variant
122 G4double Fmax = std::sqrt(g4calc->powN(xN/xN1,N)/xN1);
123 G4double chi;
124 do {
125 chi = rndmEngine->flat();
126 F = std::sqrt(g4calc->powN(chi,N)*(1-chi));
127 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
128 } while ( Fmax*rndmEngine->flat() > F);
129 return chi;
130}
CLHEP::HepLorentzVector G4LorentzVector
#define M(row, col)
G4ThreeVector G4RandomDirection()
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
void setVect(const Hep3Vector &)
virtual double flat()=0
std::vector< G4LorentzVector * > * Decay(G4double parent_mass, const std::vector< G4double > &fragment_masses) const
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powN(G4double x, G4int n) const
Definition: G4Pow.cc:162
#define N
Definition: crc32.c:56