Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4AtomicFormFactor.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28
29//---------------------------------------------------------------------------
30//
31// ClassName: G4AtomicFormFactor
32//
33// Description: Contains the function for the evaluation of the atomic form
34// factor. The tabulated data are available on IUCr website
35//
36// Class description:
37//
38// XXX
39//
40
41//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
42
43// 21-04-16, created by E.Bagli
44
45//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
46
47#ifndef G4ATOMICFORMFACTOR_HH
48#define G4ATOMICFORMFACTOR_HH 1
49
50#include "globals.hh"
51#include <vector>
52#include <map>
53#include "G4Exp.hh"
54
55//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
56
58{
59private:
60 static G4AtomicFormFactor* s_G4AtomicFormFactorManager;
61
62public:
64 if(s_G4AtomicFormFactorManager == nullptr)
65 {
66 s_G4AtomicFormFactorManager = new G4AtomicFormFactor();
67 }
68 return s_G4AtomicFormFactorManager;
69 }
70
71 //
72 // theCoefficientsMap stores the coefficients for the form factor
73 // calculations. It can be loaded only by LoadCoefficiencts()
74 // and accessed by theCoefficients[].
75 //
76private:
77 std::map<G4int,std::vector<G4double> > theCoefficientsMap;
78 G4double theCoefficients[9];
79 G4int loadedIndex;
80
81 //
82 // LoadCoefficiencts() method allows the evaluation of the atomic form
83 // factor coefficients and the storage in theCoefficients.
84 // If theCoefficients are already correct, no need to get new ones
85 // Reference: International Tables for Crystallography (2006).
86 // Vol. C, ch. 6.1, pp. 554-595
87 // doi: 10.1107/97809553602060000600
88 // Chapter 6.1. Intensity of diffracted intensities
89 // IUCr Eq. 6.1.1.15, Coefficients Table 6.1.1.4
90 //
91private:
92 void InsertCoefficients(G4int index, const std::vector<G4double>& aDoubleVec)
93 {
94 theCoefficientsMap.insert(
95 std::pair<G4int, std::vector<G4double>>(index, aDoubleVec));
96 }
97
98 void LoadCoefficiencts(G4int index){
99 loadedIndex = index;
100 for(unsigned int i0=0;i0<9;i0++){
101 theCoefficients[i0] = theCoefficientsMap[index][i0];
102 }
103
104 }
105
106 inline
107 G4int GetIndex(G4int Z, G4int charge = 0) {return Z*100 + charge;}
108
109
110 //
111 // Get() function gives back the Atomic Form Factor of the Z material
112 //
113public:
114 G4double Get(G4double kScatteringVector, G4int Z, G4int charge = 0){
115 if(loadedIndex != GetIndex(Z,charge)){
116 LoadCoefficiencts(GetIndex(Z,charge));
117 }
118 G4double result = 0.;
119 G4double kVecOn4PiSquared = (kScatteringVector / 1.e-7 / 3.1415926536) * 0.125; // (k/(4pi))/ angstrom
120 kVecOn4PiSquared= kVecOn4PiSquared * kVecOn4PiSquared; // (k/(4pi))^2
121
122 for(unsigned int i0=0;i0<4;i0++){
123 result += theCoefficients[i0*2] * G4Exp(- theCoefficients[i0*2+1] * kVecOn4PiSquared);
124 }
125 result += theCoefficients[8];
126 return result;
127 }
128
129 //
130 // Singleton constructor to create the atomic form factor calculator
131 // Atomic form factor are evaluated using IUCr tables
132 // http://it.iucr.org/Cb/ch6o1v0001/
133 //
134protected:
136 InsertCoefficients(100,{0.489918,20.6593,0.262003,7.74039,0.196767,49.5519,0.049879,2.20159,0.001305});
137 InsertCoefficients(99,{0.897661,53.1368,0.565616,15.187,0.415815,186.576,0.116973,3.56709,0.002389});
138 InsertCoefficients(200,{0.8734,9.1037,0.6309,3.3568,0.3112,22.9276,0.178,0.9821,0.0064});
139 InsertCoefficients(300,{1.1282,3.9546,0.7508,1.0524,0.6175,85.3905,0.4653,168.261,0.0377});
140 InsertCoefficients(301,{0.6968,4.6237,0.7888,1.9557,0.3414,0.6316,0.1563,10.0953,0.0167});
141 InsertCoefficients(400,{1.5919,43.6427,1.1278,1.8623,0.5391,103.483,0.7029,0.542,0.0385});
142 InsertCoefficients(402,{6.2603,0.0027,0.8849,0.8313,0.7993,2.2758,0.1647,5.1146,-6.1092});
143 InsertCoefficients(500,{2.0545,23.2185,1.3326,1.021,1.0979,60.3498,0.7068,0.1403,-0.19320});
144 InsertCoefficients(600,{2.31,20.8439,1.02,10.2075,1.5886,0.5687,0.865,51.6512,0.2156});
145 InsertCoefficients(610,{2.26069,22.6907,1.56165,0.656665,1.05075,9.75618,0.839259,55.5949,0.286977});
146 InsertCoefficients(700,{12.2126,0.0057,3.1322,9.8933,2.0125,28.9975,1.1663,0.5826,-11.529});
147 InsertCoefficients(800,{3.0485,13.2771,2.2868,5.7011,1.5463,0.3239,0.867,32.9089,0.2508});
148 InsertCoefficients(799,{4.1916,12.8573,1.63969,4.17236,1.52673,47.0179,-20.307,-0.01404,21.9412});
149 InsertCoefficients(900,{3.5392,10.2825,2.6412,4.2944,1.517,0.2615,1.0243,26.1476,0.2776});
150 InsertCoefficients(899,{3.6322,5.27756,3.51057,14.7353,1.26064,0.442258,0.940706,47.3437,0.653396});
151 InsertCoefficients(1000,{3.9553,8.4042,3.1125,3.4262,1.4546,0.2306,1.1251,21.7184,0.3515});
152 InsertCoefficients(1100,{4.7626,3.285,3.1736,8.8422,1.2674,0.3136,1.1128,129.424,0.676});
153 InsertCoefficients(1101,{3.2565,2.6671,3.9362,6.1153,1.3998,0.2001,1.0032,14.039,0.404});
154 InsertCoefficients(1200,{5.4204,2.8275,2.1735,79.2611,1.2269,0.3808,2.3073,7.1937,0.8584});
155 InsertCoefficients(1202,{3.4988,2.1676,3.8378,4.7542,1.3284,0.185,0.8497,10.1411,0.4853});
156 InsertCoefficients(1300,{6.4202,3.0387,1.9002,0.7426,1.5936,31.5472,1.9646,85.0886,1.1151});
157 InsertCoefficients(1303,{4.17448,1.93816,3.3876,4.14553,1.20296,0.228753,0.528137,8.28524,0.706786});
158 InsertCoefficients(1400,{6.2915,2.4386,3.0353,32.3337,1.9891,0.6785,1.541,81.6937,1.1407});
159 InsertCoefficients(1410,{5.66269,2.6652,3.07164,38.6634,2.62446,0.916946,1.3932,93.5458,1.24707});
160 InsertCoefficients(1404,{4.43918,1.64167,3.20345,3.43757,1.19453,0.2149,0.41653,6.65365,0.746297});
161 InsertCoefficients(1500,{6.4345,1.9067,4.1791,27.157,1.78,0.526,1.4908,68.1645,1.1149});
162 InsertCoefficients(1600,{6.9053,1.4679,5.2034,22.2151,1.4379,0.2536,1.5863,56.172,0.8669});
163 InsertCoefficients(1700,{11.4604,0.0104,7.1964,1.1662,6.2556,18.5194,1.6455,47.7784,-9.5574});
164 InsertCoefficients(1699,{18.2915,0.0066,7.2084,1.1717,6.5337,19.5424,2.3386,60.4486,-16.378});
165 InsertCoefficients(1800,{7.4845,0.9072,6.7723,14.8407,0.6539,43.8983,1.6442,33.3929,1.4445});
166 InsertCoefficients(1900,{8.2186,12.7949,7.4398,0.7748,1.0519,213.187,0.8659,41.6841,1.4228});
167 InsertCoefficients(1901,{7.9578,12.6331,7.4917,0.7674,6.359,-0.00200,1.1915,31.9128,-4.9978});
168 InsertCoefficients(2000,{8.6266,10.4421,7.3873,0.6599,1.5899,85.7484,1.0211,178.437,1.3751});
169 InsertCoefficients(2002,{15.6348,-0.00740,7.9518,0.6089,8.4372,10.3116,0.8537,25.9905,-14.875});
170 InsertCoefficients(2100,{9.189,9.0213,7.3679,0.5729,1.6409,136.108,1.468,51.3531,1.3329});
171 InsertCoefficients(2103,{13.4008,0.29854,8.0273,7.9629,1.65943,-0.28604,1.57936,16.0662,-6.6667});
172 InsertCoefficients(2200,{9.7595,7.8508,7.3558,0.5,1.6991,35.6338,1.9021,116.105,1.2807});
173 InsertCoefficients(2202,{9.11423,7.5243,7.62174,0.457585,2.2793,19.5361,0.087899,61.6558,0.897155});
174 InsertCoefficients(2203,{17.7344,0.22061,8.73816,7.04716,5.25691,-0.15762,1.92134,15.9768,-14.652});
175 InsertCoefficients(2204,{19.5114,0.178847,8.23473,6.67018,2.01341,-0.29263,1.5208,12.9464,-13.280});
176 InsertCoefficients(2300,{10.2971,6.8657,7.3511,0.4385,2.0703,26.8938,2.0571,102.478,1.2199});
177 InsertCoefficients(2302,{10.106,6.8818,7.3541,0.4409,2.2884,20.3004,0.0223,115.122,1.2298});
178 InsertCoefficients(2303,{9.43141,6.39535,7.7419,0.383349,2.15343,15.1908,0.016865,63.969,0.656565});
179 InsertCoefficients(2305,{15.6887,0.679003,8.14208,5.40135,2.03081,9.97278,-9.5760,0.940464,1.7143});
180 InsertCoefficients(2400,{10.6406,6.1038,7.3537,0.392,3.324,20.2626,1.4922,98.7399,1.1832});
181 InsertCoefficients(2402,{9.54034,5.66078,7.7509,0.344261,3.58274,13.3075,0.509107,32.4224,0.616898});
182 InsertCoefficients(2433,{9.6809,5.59463,7.81136,0.334393,2.87603,12.8288,0.113575,32.8761,0.518275});
183 InsertCoefficients(2500,{11.2819,5.3409,7.3573,0.3432,3.0193,17.8674,2.2441,83.7543,1.0896});
184 InsertCoefficients(2502,{10.8061,5.2796,7.362,0.3435,3.5268,14.343,0.2184,41.3235,1.0874});
185 InsertCoefficients(2503,{9.84521,4.91797,7.87194,0.294393,3.56531,10.8171,0.323613,24.1281,0.393974});
186 InsertCoefficients(2504,{9.96253,4.8485,7.97057,0.283303,2.76067,10.4852,0.054447,27.573,0.251877});
187 InsertCoefficients(2600,{11.7695,4.7611,7.3573,0.3072,3.5222,15.3535,2.3045,76.8805,1.0369});
188 InsertCoefficients(2602,{11.0424,4.6538,7.374,0.3053,4.1346,12.0546,0.4399,31.2809,1.0097});
189 InsertCoefficients(2603,{11.1764,4.6147,7.3863,0.3005,3.3948,11.6729,0.0724,38.5566,0.9707});
190 InsertCoefficients(2700,{12.2841,4.2791,7.3409,0.2784,4.0034,13.5359,2.3488,71.1692,1.0118});
191 InsertCoefficients(2702,{11.2296,4.1231,7.3883,0.2726,4.7393,10.2443,0.7108,25.6466,0.9324});
192 InsertCoefficients(2703,{10.338,3.90969,7.88173,0.238668,4.76795,8.35583,0.725591,18.3491,0.286667});
193 InsertCoefficients(2800,{12.8376,3.8785,7.292,0.2565,4.4438,12.1763,2.38,66.3421,1.0341});
194 InsertCoefficients(2802,{11.4166,3.6766,7.4005,0.2449,5.3442,8.873,0.9773,22.1626,0.8614});
195 InsertCoefficients(2803,{10.7806,3.5477,7.75868,0.22314,5.22746,7.64468,0.847114,16.9673,0.386044});
196 InsertCoefficients(2900,{13.338,3.5828,7.1676,0.247,5.6158,11.3966,1.6735,64.8126,1.191});
197 InsertCoefficients(2901,{11.9475,3.3669,7.3573,0.2274,6.2455,8.6625,1.5578,25.8487,0.89});
198 InsertCoefficients(2902,{11.8168,3.37484,7.11181,0.244078,5.78135,7.9876,1.14523,19.897,1.14431});
199 InsertCoefficients(3000,{14.0743,3.2655,7.0318,0.2333,5.1652,10.3163,2.41,58.7097,1.3041});
200 InsertCoefficients(3002,{11.9719,2.9946,7.3862,0.2031,6.4668,7.0826,1.394,18.0995,0.7807});
201 InsertCoefficients(3100,{15.2354,3.0669,6.7006,0.2412,4.3591,10.7805,2.9623,61.4135,1.7189});
202 InsertCoefficients(3103,{12.692,2.81262,6.69883,0.22789,6.06692,6.36441,1.0066,14.4122,1.53545});
203 InsertCoefficients(3200,{16.0816,2.8509,6.3747,0.2516,3.7068,11.4468,3.683,54.7625,2.1313});
204 InsertCoefficients(3204,{12.9172,2.53718,6.70003,0.205855,6.06791,5.47913,0.859041,11.603,1.45572});
205 InsertCoefficients(3300,{16.6723,2.6345,6.0701,0.2647,3.4313,12.9479,4.2779,47.7972,2.531});
206 InsertCoefficients(3400,{17.0006,2.4098,5.8196,0.2726,3.9731,15.2372,4.3543,43.8163,2.8409});
207 InsertCoefficients(3500,{17.1789,2.1723,5.2358,16.5796,5.6377,0.2609,3.9851,41.4328,2.9557});
208 InsertCoefficients(3499,{17.1718,2.2059,6.3338,19.3345,5.5754,0.2871,3.7272,58.1535,3.1776});
209 InsertCoefficients(3600,{17.3555,1.9384,6.7286,16.5623,5.5493,0.2261,3.5375,39.3972,2.825});
210 InsertCoefficients(3700,{17.1784,1.7888,9.6435,17.3151,5.1399,0.2748,1.5292,164.934,3.4873});
211 InsertCoefficients(3701,{17.5816,1.7139,7.6598,14.7957,5.8981,0.1603,2.7817,31.2087,2.0782});
212 InsertCoefficients(3800,{17.5663,1.5564,9.8184,14.0988,5.422,0.1664,2.6694,132.376,2.5064});
213 InsertCoefficients(3802,{18.0874,1.4907,8.1373,12.6963,2.5654,24.5651,-34.193,-0.01380,41.4025});
214 InsertCoefficients(3900,{17.776,1.4029,10.2946,12.8006,5.72629,0.125599,3.26588,104.354,1.91213});
215 InsertCoefficients(3903,{17.9268,1.35417,9.1531,11.2145,1.76795,22.6599,-33.108,-0.01319,40.2602});
216 InsertCoefficients(4000,{17.8765,1.27618,10.948,11.916,5.41732,0.117622,3.65721,87.6627,2.06929});
217 InsertCoefficients(4004,{18.1668,1.2148,10.0562,10.1483,1.01118,21.6054,-2.6479,-0.10276,9.41454});
218 InsertCoefficients(4100,{17.6142,1.18865,12.0144,11.766,4.04183,0.204785,3.53346,69.7957,3.75591});
219 InsertCoefficients(4103,{19.8812,0.019175,18.0653,1.13305,11.0177,10.1621,1.94715,28.3389,-12.912});
220 InsertCoefficients(4105,{17.9163,1.12446,13.3417,0.028781,10.799,9.28206,0.337905,25.7228,-6.3934});
221 InsertCoefficients(4200,{3.7025,0.2772,17.2356,1.0958,12.8876,11.004,3.7429,61.6584,4.3875});
222 InsertCoefficients(4203,{21.1664,0.014734,18.2017,1.03031,11.7423,9.53659,2.30951,26.6307,-14.421});
223 InsertCoefficients(4205,{21.0149,0.014345,18.0992,1.02238,11.4632,8.78809,0.740625,23.3452,-14.316});
224 InsertCoefficients(4206,{17.8871,1.03649,11.175,8.48061,6.57891,0.058881,0,0,0.344941});
225 InsertCoefficients(4300,{19.1301,0.864132,11.0948,8.14487,4.64901,21.5707,2.71263,86.8472,5.40428});
226 InsertCoefficients(4400,{19.2674,0.80852,12.9182,8.43467,4.86337,24.7997,1.56756,94.2928,5.37874});
227 InsertCoefficients(4403,{18.5638,0.847329,13.2885,8.37164,9.32602,0.017662,3.00964,22.887,-3.1892});
228 InsertCoefficients(4404,{18.5003,0.844582,13.1787,8.12534,4.71304,0.36495,2.18535,20.8504,1.42357});
229 InsertCoefficients(4500,{19.2957,0.751536,14.3501,8.21758,4.73425,25.8749,1.28918,98.6062,5.328});
230 InsertCoefficients(4503,{18.8785,0.764252,14.1259,7.84438,3.32515,21.2487,-6.1989,-0.01036,11.8678});
231 InsertCoefficients(4504,{18.8545,0.760825,13.9806,7.62436,2.53464,19.3317,-5.6526,-0.01020,11.2835});
232 InsertCoefficients(4600,{19.3319,0.698655,15.5017,7.98929,5.29537,25.2052,0.605844,76.8986,5.26593});
233 InsertCoefficients(4602,{19.1701,0.696219,15.2096,7.55573,4.32234,22.5057,0,0,5.2916});
234 InsertCoefficients(4604,{19.2493,0.683839,14.79,7.14833,2.89289,17.9144,-7.9492,0.005127,13.0174});
235 InsertCoefficients(4700,{19.2808,0.6446,16.6885,7.4726,4.8045,24.6605,1.0463,99.8156,5.179});
236 InsertCoefficients(4701,{19.1812,0.646179,15.9719,7.19123,5.27475,21.7326,0.357534,66.1147,5.21572});
237 InsertCoefficients(4702,{19.1643,0.645643,16.2456,7.18544,4.3709,21.4072,0,0,5.21404});
238 InsertCoefficients(4800,{19.2214,0.5946,17.6444,6.9089,4.461,24.7008,1.6029,87.4825,5.0694});
239 InsertCoefficients(4802,{19.1514,0.597922,17.2535,6.80639,4.47128,20.2521,0,0,5.11937});
240 InsertCoefficients(4900,{19.1624,0.5476,18.5596,6.3776,4.2948,25.8499,2.0396,92.8029,4.9391});
241 InsertCoefficients(4903,{19.1045,0.551522,18.1108,6.3247,3.78897,17.3595,0,0,4.99635});
242 InsertCoefficients(5000,{19.1889,5.8303,19.1005,0.5031,4.4585,26.8909,2.4663,83.9571,4.7821});
243 InsertCoefficients(5002,{19.1094,0.5036,19.0548,5.8378,4.5648,23.3752,0.487,62.2061,4.7861});
244 InsertCoefficients(5004,{18.9333,5.764,19.7131,0.4655,3.4182,14.0049,0.0193,-0.75830,3.9182});
245 InsertCoefficients(5100,{19.6418,5.3034,19.0455,0.4607,5.0371,27.9074,2.6827,75.2825,4.5909});
246 InsertCoefficients(5103,{18.9755,0.467196,18.933,5.22126,5.10789,19.5902,0.288753,55.5113,4.69626});
247 InsertCoefficients(5105,{19.8685,5.44853,19.0302,0.467973,2.41253,14.1259,0,0,4.69263});
248 InsertCoefficients(5200,{19.9644,4.81742,19.0138,0.420885,6.14487,28.5284,2.5239,70.8403,4.352});
249 InsertCoefficients(5300,{20.1472,4.347,18.9949,0.3814,7.5138,27.766,2.2735,66.8776,4.0712});
250 InsertCoefficients(5301,{20.2332,4.3579,18.997,0.3815,7.8069,29.5259,2.8868,84.9304,4.0714});
251 InsertCoefficients(5400,{20.2933,3.9282,19.0298,0.344,8.9767,26.4659,1.99,64.2658,3.7118});
252 InsertCoefficients(5500,{20.3892,3.569,19.1062,0.3107,10.662,24.3879,1.4953,213.904,3.3352});
253 InsertCoefficients(5501,{20.3524,3.552,19.1278,0.3086,10.2821,23.7128,0.9615,59.4565,3.2791});
254 InsertCoefficients(5600,{20.3361,3.216,19.297,0.2756,10.888,20.2073,2.6959,167.202,2.7731});
255 InsertCoefficients(5602,{20.1807,3.21367,19.1136,0.28331,10.9054,20.0558,0.77634,51.746,3.02902});
256 InsertCoefficients(5700,{20.578,2.94817,19.599,0.244475,11.3727,18.7726,3.28719,133.124,2.14678});
257 InsertCoefficients(5703,{20.2489,2.9207,19.3763,0.250698,11.6323,17.8211,0.336048,54.9453,2.4086});
258 InsertCoefficients(5800,{21.1671,2.81219,19.7695,0.226836,11.8513,17.6083,3.33049,127.113,1.86264});
259 InsertCoefficients(5803,{20.8036,2.77691,19.559,0.23154,11.9369,16.5408,0.612376,43.1692,2.09013});
260 InsertCoefficients(5804,{20.3235,2.65941,19.8186,0.21885,12.1233,15.7992,0.144583,62.2355,1.5918});
261 InsertCoefficients(5900,{22.044,2.77393,19.6697,0.222087,12.3856,16.7669,2.82428,143.644,2.0583});
262 InsertCoefficients(5903,{21.3727,2.6452,19.7491,0.214299,12.1329,15.323,0.97518,36.4065,1.77132});
263 InsertCoefficients(5904,{20.9413,2.54467,20.0539,0.202481,12.4668,14.8137,0.296689,45.4643,1.24285});
264 InsertCoefficients(6000,{22.6845,2.66248,19.6847,0.210628,12.774,15.885,2.85137,137.903,1.98486});
265 InsertCoefficients(6003,{21.961,2.52722,19.9339,0.199237,12.12,14.1783,1.51031,30.8717,1.47588});
266 InsertCoefficients(6100,{23.3405,2.5627,19.6095,0.202088,13.1235,15.1009,2.87516,132.721,2.02876});
267 InsertCoefficients(6103,{22.5527,2.4174,20.1108,0.185769,12.0671,13.1275,2.07492,27.4491,1.19499});
268 InsertCoefficients(6200,{24.0042,2.47274,19.4258,0.196451,13.4396,14.3996,2.89604,128.007,2.20963});
269 InsertCoefficients(6203,{23.1504,2.31641,20.2599,0.174081,11.9202,12.1571,2.71488,24.8242,0.954586});
270 InsertCoefficients(6300,{24.6274,2.3879,19.0886,0.1942,13.7603,13.7546,2.9227,123.174,2.5745});
271 InsertCoefficients(6302,{24.0063,2.27783,19.9504,0.17353,11.8034,11.6096,3.87243,26.5156,1.36389});
272 InsertCoefficients(6303,{23.7497,2.22258,20.3745,0.16394,11.8509,11.311,3.26503,22.9966,0.759344});
273 InsertCoefficients(6400,{25.0709,2.25341,19.0798,0.181951,13.8518,12.9331,3.54545,101.398,2.4196});
274 InsertCoefficients(6403,{24.3466,2.13553,20.4208,0.155525,11.8708,10.5782,3.7149,21.7029,0.645089});
275 InsertCoefficients(6500,{25.8976,2.24256,18.2185,0.196143,14.3167,12.6648,2.95354,115.362,3.58324});
276 InsertCoefficients(6503,{24.9559,2.05601,20.3271,0.149525,12.2471,10.0499,3.773,21.2773,0.691967});
277 InsertCoefficients(6600,{26.507,2.1802,17.6383,0.202172,14.5596,12.1899,2.96577,111.874,4.29728});
278 InsertCoefficients(6603,{25.5395,1.9804,20.2861,0.143384,11.9812,9.34972,4.50073,19.581,0.68969});
279 InsertCoefficients(6700,{26.9049,2.07051,17.294,0.19794,14.5583,11.4407,3.63837,92.6566,4.56796});
280 InsertCoefficients(6703,{26.1296,1.91072,20.0994,0.139358,11.9788,8.80018,4.93676,18.5908,0.852795});
281 InsertCoefficients(6800,{27.6563,2.07356,16.4285,0.223545,14.9779,11.3604,2.98233,105.703,5.92046});
282 InsertCoefficients(6803,{26.722,1.84659,19.7748,0.13729,12.1506,8.36225,5.17379,17.8974,1.17613});
283 InsertCoefficients(6900,{28.1819,2.02859,15.8851,0.238849,15.1542,10.9975,2.98706,102.961,6.75621});
284 InsertCoefficients(6903,{27.3083,1.78711,19.332,0.136974,12.3339,7.96778,5.38348,17.2922,1.63929});
285 InsertCoefficients(7000,{28.6641,1.9889,15.4345,0.257119,15.3087,10.6647,2.98963,100.417,7.56672});
286 InsertCoefficients(7002,{28.1209,1.78503,17.6817,0.15997,13.3335,8.18304,5.14657,20.39,3.70983});
287 InsertCoefficients(7003,{27.8917,1.73272,18.7614,0.13879,12.6072,7.64412,5.47647,16.8153,2.26001});
288 InsertCoefficients(7100,{28.9476,1.90182,15.2208,9.98519,15.1,0.261033,3.71601,84.3298,7.97628});
289 InsertCoefficients(7103,{28.4628,1.68216,18.121,0.142292,12.8429,7.33727,5.59415,16.3535,2.97573});
290 InsertCoefficients(7200,{29.144,1.83262,15.1726,9.5999,14.7586,0.275116,4.30013,72.029,8.58154});
291 InsertCoefficients(7204,{28.8131,1.59136,18.4601,0.128903,12.7285,6.76232,5.59927,14.0366,2.39699});
292 InsertCoefficients(7300,{29.2024,1.77333,15.2293,9.37046,14.5135,0.295977,4.76492,63.3644,9.24354});
293 InsertCoefficients(7305,{29.1587,1.50711,18.8407,0.116741,12.8268,6.31524,5.38695,12.4244,1.78555});
294 InsertCoefficients(7400,{29.0818,1.72029,15.43,9.2259,14.4327,0.321703,5.11982,57.056,9.8875});
295 InsertCoefficients(7406,{29.4936,1.42755,19.3763,0.104621,13.0544,5.93667,5.06412,11.1972,1.01074});
296 InsertCoefficients(7500,{28.7621,1.67191,15.7189,9.09227,14.5564,0.3505,5.44174,52.0861,10.472});
297 InsertCoefficients(7600,{28.1894,1.62903,16.155,8.97948,14.9305,0.382661,5.67589,48.1647,11.0005});
298 InsertCoefficients(7604,{30.419,1.37113,15.2637,6.84706,14.7458,0.165191,5.06795,18.003,6.49804});
299 InsertCoefficients(7700,{27.3049,1.59279,16.7296,8.86553,15.6115,0.417916,5.83377,45.0011,11.4722});
300 InsertCoefficients(7703,{30.4156,1.34323,15.862,7.10909,13.6145,0.204633,5.82008,20.3254,8.27903});
301 InsertCoefficients(7704,{30.7058,1.30923,15.5512,6.71983,14.2326,0.167252,5.53672,17.4911,6.96824});
302 InsertCoefficients(7800,{27.0059,1.51293,17.7639,8.81174,15.7131,0.424593,5.7837,38.6103,11.6883});
303 InsertCoefficients(7802,{29.8429,1.32927,16.7224,7.38979,13.2153,0.263297,6.35234,22.9426,9.85329});
304 InsertCoefficients(7804,{30.9612,1.24813,15.9829,6.60834,13.7348,0.16864,5.92034,16.9392,7.39534});
305 InsertCoefficients(7900,{16.8819,0.4611,18.5913,8.6216,25.5582,1.4826,5.86,36.3956,12.0658});
306 InsertCoefficients(7901,{28.0109,1.35321,17.8204,7.7395,14.3359,0.356752,6.58077,26.4043,11.2299});
307 InsertCoefficients(7903,{30.6886,1.2199,16.9029,6.82872,12.7801,0.212867,6.52354,18.659,9.0968});
308 InsertCoefficients(8000,{20.6809,0.545,19.0417,8.4484,21.6575,1.5729,5.9676,38.3246,12.6089});
309 InsertCoefficients(8001,{25.0853,1.39507,18.4973,7.65105,16.8883,0.443378,6.48216,28.2262,12.0205});
310 InsertCoefficients(8002,{29.5641,1.21152,18.06,7.05639,12.8374,0.284738,6.89912,20.7482,10.6268});
311 InsertCoefficients(8100,{27.5446,0.65515,19.1584,8.70751,15.538,1.96347,5.52593,45.8149,13.1746});
312 InsertCoefficients(8101,{21.3985,1.4711,20.4723,0.517394,18.7478,7.43463,6.82847,28.8482,12.5258});
313 InsertCoefficients(8103,{30.8695,1.1008,18.3481,6.53852,11.9328,0.219074,7.00574,17.2114,9.8027});
314 InsertCoefficients(8200,{31.0617,0.6902,13.0637,2.3576,18.442,8.618,5.9696,47.2579,13.4118});
315 InsertCoefficients(8202,{21.7886,1.3366,19.5682,0.488383,19.1406,6.7727,7.01107,23.8132,12.4734});
316 InsertCoefficients(8204,{32.1244,1.00566,18.8003,6.10926,12.0175,0.147041,6.96886,14.714,8.08428});
317 InsertCoefficients(8300,{33.3689,0.704,12.951,2.9238,16.5877,8.7937,6.4692,48.0093,13.5782});
318 InsertCoefficients(8303,{21.8053,1.2356,19.5026,6.24149,19.1053,0.469999,7.10295,20.3185,12.4711});
319 InsertCoefficients(8305,{33.5364,0.91654,25.0946,0.39042,19.2497,5.71414,6.91555,12.8285,-6.7994});
320 InsertCoefficients(8400,{34.6726,0.700999,15.4733,3.55078,13.1138,9.55642,7.02588,47.0045,13.677});
321 InsertCoefficients(8500,{35.3163,0.68587,19.0211,3.97458,9.49887,11.3824,7.42518,45.4715,13.7108});
322 InsertCoefficients(8600,{35.5631,0.6631,21.2816,4.0691,8.0037,14.0422,7.4433,44.2473,13.6905});
323 InsertCoefficients(8700,{35.9299,0.646453,23.0547,4.17619,12.1439,23.1052,2.11253,150.645,13.7247});
324 InsertCoefficients(8800,{35.763,0.616341,22.9064,3.87135,12.4739,19.9887,3.21097,142.325,13.6211});
325 InsertCoefficients(8802,{35.215,0.604909,21.67,3.5767,7.91342,12.601,7.65078,29.8436,13.5431});
326 InsertCoefficients(8900,{35.6597,0.589092,23.1032,3.65155,12.5977,18.599,4.08655,117.02,13.5266});
327 InsertCoefficients(8903,{35.1736,0.579689,22.1112,3.41437,8.19216,12.9187,7.05545,25.9443,13.4637});
328 InsertCoefficients(9000,{35.5645,0.563359,23.4219,3.46204,12.7473,17.8309,4.80703,99.1722,13.4314});
329 InsertCoefficients(9004,{35.1007,0.555054,22.4418,3.24498,9.78554,13.4661,5.29444,23.9533,13.376});
330 InsertCoefficients(9100,{35.8847,0.547751,23.2948,3.41519,14.1891,16.9235,4.17287,105.251,13.4287});
331 InsertCoefficients(9200,{36.0228,0.5293,23.4128,3.3253,14.9491,16.0927,4.188,100.613,13.3966});
332 InsertCoefficients(9203,{35.5747,0.52048,22.5259,3.12293,12.2165,12.7148,5.37073,26.3394,13.3092});
333 InsertCoefficients(9204,{35.3715,0.516598,22.5326,3.05053,12.0291,12.5723,4.7984,23.4582,13.2671});
334 InsertCoefficients(9206,{34.8509,0.507079,22.7584,2.8903,14.0099,13.1767,1.21457,25.2017,13.1665});
335 InsertCoefficients(9300,{36.1874,0.511929,23.5964,3.25396,15.6402,15.3622,4.1855,97.4908,13.3573});
336 InsertCoefficients(9303,{35.7074,0.502322,22.613,3.03807,12.9898,12.1449,5.43227,25.4928,13.2544});
337 InsertCoefficients(9304,{35.5103,0.498626,22.5787,2.96627,12.7766,11.9484,4.92159,22.7502,13.2116});
338 InsertCoefficients(9306,{35.0136,0.48981,22.7286,2.81099,14.3884,12.33,1.75669,22.6581,13.113});
339 InsertCoefficients(9400,{36.5254,0.499384,23.8083,3.26371,16.7707,14.9455,3.47947,105.98,13.3812});
340 InsertCoefficients(9403,{35.84,0.484938,22.7169,2.96118,13.5807,11.5331,5.66016,24.3992,13.1991});
341 InsertCoefficients(9404,{35.6493,0.481422,22.646,2.8902,13.3595,11.316,5.18831,21.8301,13.1555});
342 InsertCoefficients(9406,{35.1736,0.473204,22.7181,2.73848,14.7635,11.553,2.28678,20.9303,13.0582});
343 InsertCoefficients(9500,{36.6706,0.483629,24.0992,3.20647,17.3415,14.3136,3.49331,102.273,13.3592});
344 InsertCoefficients(9600,{36.6488,0.465154,24.4096,3.08997,17.399,13.4346,4.21665,88.4834,13.2887});
345 InsertCoefficients(9700,{36.7881,0.451018,24.7736,3.04619,17.8919,12.8946,4.23284,86.003,13.2754});
346 InsertCoefficients(9800,{36.9185,0.437533,25.1995,3.00775,18.3317,12.4044,4.24391,83.7881,13.2674});
347
348 loadedIndex = -1;
349 }
350
352};
353#endif
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
~G4AtomicFormFactor()=default
G4double Get(G4double kScatteringVector, G4int Z, G4int charge=0)
static G4AtomicFormFactor * GetManager()