Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PenelopeOscillatorManager.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Authors: Luciano Pandola (luciano.pandola at lngs.infn.it)
27//
28// History:
29// -----------
30//
31// 03 Dec 2009 First working version, Luciano Pandola
32// 16 Feb 2010 Added methods to store also total Z and A for the
33// molecule, Luciano Pandola
34// 19 Feb 2010 Scale the Hartree factors in the Compton Oscillator
35// table by (1/fine_structure_const), since the models use
36// always the ratio (hartreeFactor/fine_structure_const)
37// 16 Mar 2010 Added methods to calculate and store mean exc energy
38// and plasma energy (used for Ionisation). L Pandola
39// 18 Mar 2010 Added method to retrieve number of atoms per
40// molecule. L. Pandola
41// 06 Sep 2011 Override the local Penelope database and use the main
42// G4AtomicDeexcitation database to retrieve the shell
43// binding energies. L. Pandola
44// 15 Mar 2012 Added method to retrieve number of atom of given Z per
45// molecule. Restore the original Penelope database for levels
46// below 100 eV. L. Pandola
47//
48// -------------------------------------------------------------------
49
51
52#include "globals.hh"
54#include "G4SystemOfUnits.hh"
56#include "G4AtomicShell.hh"
57#include "G4Material.hh"
58#include "G4Exp.hh"
59
60//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
61
62G4ThreadLocal G4PenelopeOscillatorManager* G4PenelopeOscillatorManager::instance = nullptr;
63
64//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
65
67 fOscillatorStoreIonisation(nullptr),fOscillatorStoreCompton(nullptr),
68 fAtomicNumber(nullptr),fAtomicMass(nullptr),fExcitationEnergy(nullptr),
69 fPlasmaSquared(nullptr),fAtomsPerMolecule(nullptr),
70 fAtomTablePerMolecule(nullptr)
71{
72 fReadElementData = false;
73 for (G4int i=0;i<5;i++)
74 {
75 for (G4int j=0;j<2000;j++)
76 fElementData[i][j] = 0.;
77 }
78 fVerbosityLevel = 0;
79}
80
81//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
82
84{
85 Clear();
86 delete instance;
87}
88
89//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
90
92{
93 if (!instance)
94 instance = new G4PenelopeOscillatorManager();
95 return instance;
96}
97
98//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
99
101{
102 if (fVerbosityLevel > 1)
103 G4cout << " G4PenelopeOscillatorManager::Clear() - Clean Oscillator Tables" << G4endl;
104
105 //Clean up OscillatorStoreIonisation
106 for (auto& item : (*fOscillatorStoreIonisation))
107 {
108 G4PenelopeOscillatorTable* table = item.second;
109 if (table)
110 {
111 for (std::size_t k=0;k<table->size();++k) //clean individual oscillators
112 {
113 if ((*table)[k])
114 delete ((*table)[k]);
115 }
116 delete table;
117 }
118 }
119 delete fOscillatorStoreIonisation;
120
121 //Clean up OscillatorStoreCompton
122 for (auto& item : (*fOscillatorStoreCompton))
123 {
124 G4PenelopeOscillatorTable* table = item.second;
125 if (table)
126 {
127 for (std::size_t k=0;k<table->size();++k) //clean individual oscillators
128 {
129 if ((*table)[k])
130 delete ((*table)[k]);
131 }
132 delete table;
133 }
134 }
135 delete fOscillatorStoreCompton;
136
137 if (fAtomicMass) delete fAtomicMass;
138 if (fAtomicNumber) delete fAtomicNumber;
139 if (fExcitationEnergy) delete fExcitationEnergy;
140 if (fPlasmaSquared) delete fPlasmaSquared;
141 if (fAtomsPerMolecule) delete fAtomsPerMolecule;
142 if (fAtomTablePerMolecule) delete fAtomTablePerMolecule;
143}
144
145//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
146
148{
150 if (!theTable)
151 {
152 G4cout << " G4PenelopeOscillatorManager::Dump " << G4endl;
153 G4cout << "Problem in retrieving the Ionisation Oscillator Table for "
154 << material->GetName() << G4endl;
155 return;
156 }
157 G4cout << "*********************************************************************" << G4endl;
158 G4cout << " Penelope Oscillator Table Ionisation for " << material->GetName() << G4endl;
159 G4cout << "*********************************************************************" << G4endl;
160 G4cout << "The table contains " << theTable->size() << " oscillators " << G4endl;
161 G4cout << "*********************************************************************" << G4endl;
162 if (theTable->size() < 10)
163 for (std::size_t k=0;k<theTable->size();++k)
164 {
165 G4cout << "Oscillator # " << k << " Z = " << (*theTable)[k]->GetParentZ() <<
166 " Shell Flag = " << (*theTable)[k]->GetShellFlag() <<
167 " Parent shell ID = " << (*theTable)[k]->GetParentShellID() << G4endl;
168 G4cout << "Ionisation energy = " << (*theTable)[k]->GetIonisationEnergy()/eV << " eV" << G4endl;
169 G4cout << "Occupation number = " << (*theTable)[k]->GetOscillatorStrength() << G4endl;
170 G4cout << "Resonance energy = " << (*theTable)[k]->GetResonanceEnergy()/eV << " eV" << G4endl;
171 G4cout << "Cufoff resonance energy = " <<
172 (*theTable)[k]->GetCutoffRecoilResonantEnergy()/eV << " eV" << G4endl;
173 G4cout << "*********************************************************************" << G4endl;
174 }
175 for (std::size_t k=0;k<theTable->size();++k)
176 {
177 G4cout << k << " " << (*theTable)[k]->GetOscillatorStrength() << " " <<
178 (*theTable)[k]->GetIonisationEnergy()/eV << " "
179 << (*theTable)[k]->GetResonanceEnergy()/eV << " " <<
180 (*theTable)[k]->GetParentZ() << " " << (*theTable)[k]->GetShellFlag() << " " <<
181 (*theTable)[k]->GetParentShellID() << G4endl;
182 }
183 G4cout << "*********************************************************************" << G4endl;
184
185 //Compton table
186 theTable = GetOscillatorTableCompton(material);
187 if (!theTable)
188 {
189 G4cout << " G4PenelopeOscillatorManager::Dump " << G4endl;
190 G4cout << "Problem in retrieving the Compton Oscillator Table for " <<
191 material->GetName() << G4endl;
192 return;
193 }
194 G4cout << "*********************************************************************" << G4endl;
195 G4cout << " Penelope Oscillator Table Compton for " << material->GetName() << G4endl;
196 G4cout << "*********************************************************************" << G4endl;
197 G4cout << "The table contains " << theTable->size() << " oscillators " << G4endl;
198 G4cout << "*********************************************************************" << G4endl;
199 if (theTable->size() < 10)
200 for (std::size_t k=0;k<theTable->size();++k)
201 {
202 G4cout << "Oscillator # " << k << " Z = " << (*theTable)[k]->GetParentZ() <<
203 " Shell Flag = " << (*theTable)[k]->GetShellFlag() <<
204 " Parent shell ID = " << (*theTable)[k]->GetParentShellID() << G4endl;
205 G4cout << "Compton index = " << (*theTable)[k]->GetHartreeFactor() << G4endl;
206 G4cout << "Ionisation energy = " << (*theTable)[k]->GetIonisationEnergy()/eV << " eV" << G4endl;
207 G4cout << "Occupation number = " << (*theTable)[k]->GetOscillatorStrength() << G4endl;
208 G4cout << "*********************************************************************" << G4endl;
209 }
210 for (std::size_t k=0;k<theTable->size();++k)
211 {
212 G4cout << k << " " << (*theTable)[k]->GetOscillatorStrength() << " " <<
213 (*theTable)[k]->GetIonisationEnergy()/eV << " " << (*theTable)[k]->GetHartreeFactor() << " " <<
214 (*theTable)[k]->GetParentZ() << " " << (*theTable)[k]->GetShellFlag() << " " <<
215 (*theTable)[k]->GetParentShellID() << G4endl;
216 }
217 G4cout << "*********************************************************************" << G4endl;
218
219 return;
220}
221
222//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
223
224void G4PenelopeOscillatorManager::CheckForTablesCreated()
225{
226 //Tables should be created at the same time, since they are both filled
227 //simultaneously
228 if (!fOscillatorStoreIonisation)
229 {
230 fOscillatorStoreIonisation = new std::map<const G4Material*,G4PenelopeOscillatorTable*>;
231 if (!fReadElementData)
232 ReadElementData();
233 if (!fOscillatorStoreIonisation)
234 //It should be ok now
235 G4Exception("G4PenelopeOscillatorManager::GetOscillatorTableIonisation()",
236 "em2034",FatalException,
237 "Problem in allocating the Oscillator Store for Ionisation");
238 }
239
240 if (!fOscillatorStoreCompton)
241 {
242 fOscillatorStoreCompton = new std::map<const G4Material*,G4PenelopeOscillatorTable*>;
243 if (!fReadElementData)
244 ReadElementData();
245 if (!fOscillatorStoreCompton)
246 //It should be ok now
247 G4Exception("G4PenelopeOscillatorManager::GetOscillatorTableIonisation()",
248 "em2034",FatalException,
249 "Problem in allocating the Oscillator Store for Compton");
250 }
251
252 if (!fAtomicNumber)
253 fAtomicNumber = new std::map<const G4Material*,G4double>;
254 if (!fAtomicMass)
255 fAtomicMass = new std::map<const G4Material*,G4double>;
256 if (!fExcitationEnergy)
257 fExcitationEnergy = new std::map<const G4Material*,G4double>;
258 if (!fPlasmaSquared)
259 fPlasmaSquared = new std::map<const G4Material*,G4double>;
260 if (!fAtomsPerMolecule)
261 fAtomsPerMolecule = new std::map<const G4Material*,G4double>;
262 if (!fAtomTablePerMolecule)
263 fAtomTablePerMolecule = new std::map< std::pair<const G4Material*,G4int>, G4double>;
264}
265
266
267//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
268
270{
271 // (1) First time, create fOscillatorStores and read data
272 CheckForTablesCreated();
273
274 // (2) Check if the material has been already included
275 if (fAtomicNumber->count(mat))
276 return fAtomicNumber->find(mat)->second;
277
278 // (3) If we are here, it means that we have to create the table for the material
279 BuildOscillatorTable(mat);
280
281 // (4) now, the oscillator store should be ok
282 if (fAtomicNumber->count(mat))
283 return fAtomicNumber->find(mat)->second;
284 else
285 {
286 G4cout << "G4PenelopeOscillatorManager::GetTotalZ() " << G4endl;
287 G4cout << "Impossible to retrieve the total Z for " << mat->GetName() << G4endl;
288 return 0;
289 }
290}
291
292//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
293
295{
296 // (1) First time, create fOscillatorStores and read data
297 CheckForTablesCreated();
298
299 // (2) Check if the material has been already included
300 if (fAtomicMass->count(mat))
301 return fAtomicMass->find(mat)->second;
302
303 // (3) If we are here, it means that we have to create the table for the material
304 BuildOscillatorTable(mat);
305
306 // (4) now, the oscillator store should be ok
307 if (fAtomicMass->count(mat))
308 return fAtomicMass->find(mat)->second;
309 else
310 {
311 G4cout << "G4PenelopeOscillatorManager::GetTotalA() " << G4endl;
312 G4cout << "Impossible to retrieve the total A for " << mat->GetName() << G4endl;
313 return 0;
314 }
315}
316
317//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
318
320{
321 // (1) First time, create fOscillatorStores and read data
322 CheckForTablesCreated();
323
324 // (2) Check if the material has been already included
325 if (fOscillatorStoreIonisation->count(mat))
326 {
327 //Ok, it exists
328 return fOscillatorStoreIonisation->find(mat)->second;
329 }
330
331 // (3) If we are here, it means that we have to create the table for the material
332 BuildOscillatorTable(mat);
333
334 // (4) now, the oscillator store should be ok
335 if (fOscillatorStoreIonisation->count(mat))
336 return fOscillatorStoreIonisation->find(mat)->second;
337 else
338 {
339 G4cout << "G4PenelopeOscillatorManager::GetOscillatorTableIonisation() " << G4endl;
340 G4cout << "Impossible to create ionisation oscillator table for " << mat->GetName() << G4endl;
341 return nullptr;
342 }
343}
344
345//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
346
348 G4int index)
349{
351 if (((std::size_t)index) < theTable->size())
352 return (*theTable)[index];
353 else
354 {
355 G4cout << "WARNING: Ionisation table for material " << material->GetName() << " has " <<
356 theTable->size() << " oscillators" << G4endl;
357 G4cout << "Oscillator #" << index << " cannot be retrieved" << G4endl;
358 G4cout << "Returning null pointer" << G4endl;
359 return nullptr;
360 }
361}
362
363
364//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
365
367{
368 // (1) First time, create fOscillatorStore and read data
369 CheckForTablesCreated();
370
371 // (2) Check if the material has been already included
372 if (fOscillatorStoreCompton->count(mat))
373 {
374 //Ok, it exists
375 return fOscillatorStoreCompton->find(mat)->second;
376 }
377
378 // (3) If we are here, it means that we have to create the table for the material
379 BuildOscillatorTable(mat);
380
381 // (4) now, the oscillator store should be ok
382 if (fOscillatorStoreCompton->count(mat))
383 return fOscillatorStoreCompton->find(mat)->second;
384 else
385 {
386 G4cout << "G4PenelopeOscillatorManager::GetOscillatorTableCompton() " << G4endl;
387 G4cout << "Impossible to create Compton oscillator table for " << mat->GetName() << G4endl;
388 return nullptr;
389 }
390}
391
392//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
393
395 G4int index)
396{
398 if (((std::size_t)index) < theTable->size())
399 return (*theTable)[index];
400 else
401 {
402 G4cout << "WARNING: Compton table for material " << material->GetName() << " has " <<
403 theTable->size() << " oscillators" << G4endl;
404 G4cout << "Oscillator #" << index << " cannot be retrieved" << G4endl;
405 G4cout << "Returning null pointer" << G4endl;
406 return nullptr;
407 }
408}
409
410//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
411
412void G4PenelopeOscillatorManager::BuildOscillatorTable(const G4Material* material)
413{
414 //THIS CORRESPONDS TO THE ROUTINE PEMATW of PENELOPE
415
416 G4double meanAtomExcitationEnergy[99] = {19.2*eV, 41.8*eV, 40.0*eV, 63.7*eV, 76.0*eV, 81.0*eV,
417 82.0*eV, 95.0*eV,115.0*eV,137.0*eV,149.0*eV,156.0*eV,
418 166.0*eV,
419 173.0*eV,173.0*eV,180.0*eV,174.0*eV,188.0*eV,190.0*eV,191.0*eV,
420 216.0*eV,233.0*eV,245.0*eV,257.0*eV,272.0*eV,286.0*eV,297.0*eV,
421 311.0*eV,322.0*eV,330.0*eV,334.0*eV,350.0*eV,347.0*eV,348.0*eV,
422 343.0*eV,352.0*eV,363.0*eV,366.0*eV,379.0*eV,393.0*eV,417.0*eV,
423 424.0*eV,428.0*eV,441.0*eV,449.0*eV,470.0*eV,470.0*eV,469.0*eV,
424 488.0*eV,488.0*eV,487.0*eV,485.0*eV,491.0*eV,482.0*eV,488.0*eV,
425 491.0*eV,501.0*eV,523.0*eV,535.0*eV,546.0*eV,560.0*eV,574.0*eV,
426 580.0*eV,591.0*eV,614.0*eV,628.0*eV,650.0*eV,658.0*eV,674.0*eV,
427 684.0*eV,694.0*eV,705.0*eV,718.0*eV,727.0*eV,736.0*eV,746.0*eV,
428 757.0*eV,790.0*eV,790.0*eV,800.0*eV,810.0*eV,823.0*eV,823.0*eV,
429 830.0*eV,825.0*eV,794.0*eV,827.0*eV,826.0*eV,841.0*eV,847.0*eV,
430 878.0*eV,890.0*eV,902.0*eV,921.0*eV,934.0*eV,939.0*eV,952.0*eV,
431 966.0*eV,980.0*eV};
432
433 if (fVerbosityLevel > 0)
434 G4cout << "Going to build Oscillator Table for " << material->GetName() << G4endl;
435
436 G4int nElements = (G4int)material->GetNumberOfElements();
437 const G4ElementVector* elementVector = material->GetElementVector();
438
439 //At the moment, there's no way in Geant4 to know if a material
440 //is defined with atom numbers or fraction of weigth
441 const G4double* fractionVector = material->GetFractionVector();
442
443 //Take always the composition by fraction of mass. For the composition by
444 //atoms: it is calculated by Geant4 but with some rounding to integers
445 G4double totalZ = 0;
446 G4double totalMolecularWeight = 0;
447 G4double meanExcitationEnergy = 0;
448
449 std::vector<G4double> *StechiometricFactors = new std::vector<G4double>;
450
451 for (G4int i=0;i<nElements;i++)
452 {
453 //G4int iZ = (G4int) (*elementVector)[i]->GetZ();
454 G4double fraction = fractionVector[i];
455 G4double atomicWeigth = (*elementVector)[i]->GetAtomicMassAmu();
456 StechiometricFactors->push_back(fraction/atomicWeigth);
457 }
458 //Find max
459 G4double MaxStechiometricFactor = 0.;
460 for (G4int i=0;i<nElements;i++)
461 {
462 if ((*StechiometricFactors)[i] > MaxStechiometricFactor)
463 MaxStechiometricFactor = (*StechiometricFactors)[i];
464 }
465 if (MaxStechiometricFactor<1e-16)
466 {
468 ed << "Problem with the mass composition of " << material->GetName() << G4endl;
469 ed << "MaxStechiometricFactor = " << MaxStechiometricFactor << G4endl;
470 G4Exception("G4PenelopeOscillatorManager::BuildOscillatorTable()",
471 "em2035",FatalException,ed);
472 }
473 //Normalize
474 for (G4int i=0;i<nElements;++i)
475 (*StechiometricFactors)[i] /= MaxStechiometricFactor;
476
477 // Equivalent atoms per molecule
478 G4double theatomsPerMolecule = 0;
479 for (G4int i=0;i<nElements;i++)
480 theatomsPerMolecule += (*StechiometricFactors)[i];
481 G4double moleculeDensity =
482 material->GetTotNbOfAtomsPerVolume()/theatomsPerMolecule; //molecules per unit volume
483
484 if (fVerbosityLevel > 1)
485 {
486 for (std::size_t i=0;i<StechiometricFactors->size();++i)
487 {
488 G4cout << "Element " << (*elementVector)[i]->GetSymbol() << " (Z = " <<
489 (*elementVector)[i]->GetZasInt() << ") --> " <<
490 (*StechiometricFactors)[i] << " atoms/molecule " << G4endl;
491 }
492 }
493
494 for (G4int i=0;i<nElements;++i)
495 {
496 G4int iZ = (*elementVector)[i]->GetZasInt();
497 totalZ += iZ * (*StechiometricFactors)[i];
498 totalMolecularWeight += (*elementVector)[i]->GetAtomicMassAmu() * (*StechiometricFactors)[i];
499 meanExcitationEnergy += iZ*G4Log(meanAtomExcitationEnergy[iZ-1])*(*StechiometricFactors)[i];
500 std::pair<const G4Material*,G4int> theKey = std::make_pair(material,iZ);
501 if (!fAtomTablePerMolecule->count(theKey))
502 fAtomTablePerMolecule->insert(std::make_pair(theKey,(*StechiometricFactors)[i]));
503 }
504 meanExcitationEnergy = G4Exp(meanExcitationEnergy/totalZ);
505
506 fAtomicNumber->insert(std::make_pair(material,totalZ));
507 fAtomicMass->insert(std::make_pair(material,totalMolecularWeight));
508 fExcitationEnergy->insert(std::make_pair(material,meanExcitationEnergy));
509 fAtomsPerMolecule->insert(std::make_pair(material,theatomsPerMolecule));
510
511 if (fVerbosityLevel > 1)
512 {
513 G4cout << "Calculated mean excitation energy for " << material->GetName() <<
514 " = " << meanExcitationEnergy/eV << " eV" << G4endl;
515 }
516
517 std::vector<G4PenelopeOscillator> *helper = new std::vector<G4PenelopeOscillator>;
518
519 //First Oscillator: conduction band. Tentativaly assumed to consist of valence electrons (each
520 //atom contributes a number of electrons equal to its lowest chemical valence)
522 newOsc.SetOscillatorStrength(0.);
523 newOsc.SetIonisationEnergy(0*eV);
524 newOsc.SetHartreeFactor(0);
525 newOsc.SetParentZ(0);
526 newOsc.SetShellFlag(30);
527 newOsc.SetParentShellID(30); //does not correspond to any "real" level
528 helper->push_back(newOsc);
529
530 //Load elements and oscillators
531 for (G4int k=0;k<nElements;k++)
532 {
533 G4double Z = (*elementVector)[k]->GetZ();
534 G4bool finished = false;
535 for (G4int i=0;i<2000 && !finished;i++)
536 {
537 /*
538 fElementData[0][i] = Z;
539 fElementData[1][i] = shellCode;
540 fElementData[2][i] = occupationNumber;
541 fElementData[3][i] = ionisationEnergy;
542 fElementData[4][i] = hartreeProfile;
543 */
544 if (fElementData[0][i] == Z)
545 {
546 G4int shellID = (G4int) fElementData[1][i];
547 G4double occup = fElementData[2][i];
548 if (shellID > 0)
549 {
550
551 if (std::fabs(occup) > 0)
552 {
553 G4PenelopeOscillator newOscLocal;
554 newOscLocal.SetOscillatorStrength(std::fabs(occup)*(*StechiometricFactors)[k]);
555 newOscLocal.SetIonisationEnergy(fElementData[3][i]);
556 newOscLocal.SetHartreeFactor(fElementData[4][i]/fine_structure_const);
557 newOscLocal.SetParentZ(fElementData[0][i]);
558 //keep track of the origianl shell level
559 newOscLocal.SetParentShellID((G4int)fElementData[1][i]);
560 //register only K, L and M shells. Outer shells all grouped with
561 //shellIndex = 30
562 if (fElementData[0][i] > 6 && fElementData[1][i] < 10)
563 newOscLocal.SetShellFlag(((G4int)fElementData[1][i]));
564 else
565 newOscLocal.SetShellFlag(30);
566 helper->push_back(newOscLocal);
567 if (occup < 0)
568 {
569 G4double ff = (*helper)[0].GetOscillatorStrength();
570 ff += std::fabs(occup)*(*StechiometricFactors)[k];
571 (*helper)[0].SetOscillatorStrength(ff);
572 }
573 }
574 }
575 }
576 if (fElementData[0][i] > Z)
577 finished = true;
578 }
579 }
580
581 delete StechiometricFactors;
582
583 //NOW: sort oscillators according to increasing ionisation energy
584 //Notice: it works because helper is a vector of _object_, not a
585 //vector to _pointers_
586 std::sort(helper->begin(),helper->end());
587
588 // Plasma energy and conduction band excitation
589 static const G4double RydbergEnergy = 13.60569*eV;
590 G4double Omega = std::sqrt(4*pi*moleculeDensity*totalZ*Bohr_radius)*Bohr_radius*2.0*RydbergEnergy;
591 G4double conductionStrength = (*helper)[0].GetOscillatorStrength();
592 G4double plasmaEnergy = Omega*std::sqrt(conductionStrength/totalZ);
593
594 fPlasmaSquared->insert(std::make_pair(material,Omega*Omega));
595
596 G4bool isAConductor = false;
597 G4int nullOsc = 0;
598
599 if (fVerbosityLevel > 1)
600 {
601 G4cout << "Estimated oscillator strength and energy of plasmon: " <<
602 conductionStrength << " and " << plasmaEnergy/eV << " eV" << G4endl;
603 }
604
605 if (conductionStrength < 0.01 || plasmaEnergy<1.0*eV) //this is an insulator
606 {
607 if (fVerbosityLevel >1 )
608 G4cout << material->GetName() << " is an insulator " << G4endl;
609 //remove conduction band oscillator
610 helper->erase(helper->begin());
611 }
612 else //this is a conductor, Outer shells moved to conduction band
613 {
614 if (fVerbosityLevel >1 )
615 G4cout << material->GetName() << " is a conductor " << G4endl;
616 isAConductor = true;
617 //copy the conduction strength.. The number is going to change.
618 G4double conductionStrengthCopy = conductionStrength;
619 G4bool quit = false;
620 for (std::size_t i = 1; i<helper->size() && !quit ;++i)
621 {
622 G4double oscStre = (*helper)[i].GetOscillatorStrength();
623 //loop is repeated over here
624 if (oscStre < conductionStrengthCopy)
625 {
626 conductionStrengthCopy = conductionStrengthCopy-oscStre;
627 (*helper)[i].SetOscillatorStrength(0.);
628 nullOsc++;
629 }
630 else //this is passed only once - no goto -
631 {
632 quit = true;
633 (*helper)[i].SetOscillatorStrength(oscStre-conductionStrengthCopy);
634 if (std::fabs((*helper)[i].GetOscillatorStrength()) < 1e-12)
635 {
636 conductionStrength += (*helper)[i].GetOscillatorStrength();
637 (*helper)[i].SetOscillatorStrength(0.);
638 nullOsc++;
639 }
640 }
641 }
642 //Update conduction band
643 (*helper)[0].SetOscillatorStrength(conductionStrength);
644 (*helper)[0].SetIonisationEnergy(0.);
645 (*helper)[0].SetResonanceEnergy(plasmaEnergy);
646 G4double hartree = 0.75/std::sqrt(3.0*pi*pi*moleculeDensity*
647 Bohr_radius*Bohr_radius*Bohr_radius*conductionStrength);
648 (*helper)[0].SetHartreeFactor(hartree/fine_structure_const);
649 }
650
651 //Check f-sum rule
652 G4double sum = 0;
653 for (std::size_t i=0;i<helper->size();++i)
654 {
655 sum += (*helper)[i].GetOscillatorStrength();
656 }
657 if (std::fabs(sum-totalZ) > (1e-6*totalZ))
658 {
660 ed << "Inconsistent oscillator data for " << material->GetName() << G4endl;
661 ed << sum << " " << totalZ << G4endl;
662 G4Exception("G4PenelopeOscillatorManager::BuildOscillatorTable()",
663 "em2036",FatalException,ed);
664 }
665 if (std::fabs(sum-totalZ) > (1e-12*totalZ))
666 {
667 G4double fact = totalZ/sum;
668 for (std::size_t i=0;i<helper->size();++i)
669 {
670 G4double ff = (*helper)[i].GetOscillatorStrength()*fact;
671 (*helper)[i].SetOscillatorStrength(ff);
672 }
673 }
674
675 //Remove null items
676 for (G4int k=0;k<nullOsc;k++)
677 {
678 G4bool exit=false;
679 for (std::size_t i=0;i<helper->size() && !exit;++i)
680 {
681 if (std::fabs((*helper)[i].GetOscillatorStrength()) < 1e-12)
682 {
683 helper->erase(helper->begin()+i);
684 exit = true;
685 }
686 }
687 }
688
689 //Sternheimer's adjustment factor
690 G4double adjustmentFactor = 0;
691 if (helper->size() > 1)
692 {
693 G4double TST = totalZ*G4Log(meanExcitationEnergy/eV);
694 G4double AALow = 0.1;
695 G4double AAHigh = 10.;
696 do
697 {
698 adjustmentFactor = (AALow+AAHigh)*0.5;
699 G4double sumLocal = 0;
700 for (std::size_t i=0;i<helper->size();++i)
701 {
702 if (i == 0 && isAConductor)
703 {
704 G4double resEne = (*helper)[i].GetResonanceEnergy();
705 sumLocal += (*helper)[i].GetOscillatorStrength()*G4Log(resEne/eV);
706 }
707 else
708 {
709 G4double ionEne = (*helper)[i].GetIonisationEnergy();
710 G4double oscStre = (*helper)[i].GetOscillatorStrength();
711 G4double WI2 = (adjustmentFactor*adjustmentFactor*ionEne*ionEne) +
712 2./3.*(oscStre/totalZ)*Omega*Omega;
713 G4double resEne = std::sqrt(WI2);
714 (*helper)[i].SetResonanceEnergy(resEne);
715 sumLocal += (*helper)[i].GetOscillatorStrength()*G4Log(resEne/eV);
716 }
717 }
718 if (sumLocal < TST)
719 AALow = adjustmentFactor;
720 else
721 AAHigh = adjustmentFactor;
722 if (fVerbosityLevel > 3)
723 G4cout << "Sternheimer's adjustment factor loops: " << AALow << " " << AAHigh << " " <<
724 adjustmentFactor << " " << TST << " " <<
725 sumLocal << G4endl;
726 }while((AAHigh-AALow)>(1e-14*adjustmentFactor));
727 }
728 else
729 {
730 G4double ionEne = (*helper)[0].GetIonisationEnergy();
731 (*helper)[0].SetIonisationEnergy(std::fabs(ionEne));
732 (*helper)[0].SetResonanceEnergy(meanExcitationEnergy);
733 }
734 if (fVerbosityLevel > 1)
735 {
736 G4cout << "Sternheimer's adjustment factor: " << adjustmentFactor << G4endl;
737 }
738
739 //Check again for data consistency
740 G4double xcheck = (*helper)[0].GetOscillatorStrength()*G4Log((*helper)[0].GetResonanceEnergy());
741 G4double TST = (*helper)[0].GetOscillatorStrength();
742 for (std::size_t i=1;i<helper->size();++i)
743 {
744 xcheck += (*helper)[i].GetOscillatorStrength()*G4Log((*helper)[i].GetResonanceEnergy());
745 TST += (*helper)[i].GetOscillatorStrength();
746 }
747 if (std::fabs(TST-totalZ)>1e-8*totalZ)
748 {
750 ed << "Inconsistent oscillator data " << G4endl;
751 ed << TST << " " << totalZ << G4endl;
752 G4Exception("G4PenelopeOscillatorManager::BuildOscillatorTable()",
753 "em2036",FatalException,ed);
754 }
755 xcheck = G4Exp(xcheck/totalZ);
756 if (std::fabs(xcheck-meanExcitationEnergy) > 1e-8*meanExcitationEnergy)
757 {
759 ed << "Error in Sterheimer factor calculation " << G4endl;
760 ed << xcheck/eV << " " << meanExcitationEnergy/eV << G4endl;
761 G4Exception("G4PenelopeOscillatorManager::BuildOscillatorTable()",
762 "em2037",FatalException,ed);
763 }
764
765 //Selection of the lowest ionisation energy for inner shells. Only the K, L and M shells with
766 //ionisation energy less than the N1 shell of the heaviest element in the material are considered as
767 //inner shells. As a results, the inner/outer shell character of an atomic shell depends on the
768 //composition of the material.
769 G4double Zmax = 0;
770 for (G4int k=0;k<nElements;k++)
771 {
772 G4double Z = (*elementVector)[k]->GetZ();
773 if (Z>Zmax) Zmax = Z;
774 }
775 //Find N1 level of the heaviest element (if any).
776 G4bool found = false;
777 G4double cutEnergy = 50*eV;
778 for (std::size_t i=0;i<helper->size() && !found;++i)
779 {
780 G4double Z = (*helper)[i].GetParentZ();
781 G4int shID = (*helper)[i].GetParentShellID(); //look for the N1 level
782 if (shID == 10 && Z == Zmax)
783 {
784 found = true;
785 if ((*helper)[i].GetIonisationEnergy() > cutEnergy)
786 cutEnergy = (*helper)[i].GetIonisationEnergy();
787 }
788 }
789 //Make that cutEnergy cannot be higher than 250 eV, namely the fluorescence level by
790 //Geant4
791 G4double lowEnergyLimitForFluorescence = 250*eV;
792 cutEnergy = std::min(cutEnergy,lowEnergyLimitForFluorescence);
793
794 if (fVerbosityLevel > 1)
795 G4cout << "Cutoff energy: " << cutEnergy/eV << " eV" << G4endl;
796 //
797 //Copy helper in the oscillatorTable for Ionisation
798 //
799 //Oscillator table Ionisation for the material
800 G4PenelopeOscillatorTable* theTable = new G4PenelopeOscillatorTable(); //vector of oscillator
802 std::sort(helper->begin(),helper->end(),comparator);
803
804 //COPY THE HELPER (vector of object) to theTable (vector of Pointers).
805 for (std::size_t i=0;i<helper->size();++i)
806 {
807 //copy content --> one may need it later (e.g. to fill another table, with variations)
808 G4PenelopeOscillator* theOsc = new G4PenelopeOscillator((*helper)[i]);
809 theTable->push_back(theOsc);
810 }
811
812 //Oscillators of outer shells with resonance energies differing by a factor less than
813 //Rgroup are grouped as a single oscillator
814 G4double Rgroup = 1.05;
815 std::size_t Nost = theTable->size();
816
817 std::size_t firstIndex = (isAConductor) ? 1 : 0; //for conductors, skip conduction oscillator
818 G4bool loopAgain = false;
819 G4int nLoops = 0;
820 G4int removedLevels = 0;
821 do
822 {
823 loopAgain = false;
824 nLoops++;
825 if (Nost>firstIndex+1)
826 {
827 removedLevels = 0;
828 for (std::size_t i=firstIndex;i<theTable->size()-1;++i)
829 {
830 G4bool skipLoop = false;
831 G4int shellFlag = (*theTable)[i]->GetShellFlag();
832 G4double ionEne = (*theTable)[i]->GetIonisationEnergy();
833 G4double resEne = (*theTable)[i]->GetResonanceEnergy();
834 G4double resEnePlus1 = (*theTable)[i+1]->GetResonanceEnergy();
835 G4double oscStre = (*theTable)[i]->GetOscillatorStrength();
836 G4double oscStrePlus1 = (*theTable)[i+1]->GetOscillatorStrength();
837 //if (shellFlag < 10 && ionEne>cutEnergy) in Penelope
838 if (ionEne>cutEnergy) //remove condition that shellFlag < 10!
839 skipLoop = true;
840 if (resEne<1.0*eV || resEnePlus1<1.0*eV)
841 skipLoop = true;
842 if (resEnePlus1 > Rgroup*resEne)
843 skipLoop = true;
844 if (!skipLoop)
845 {
846 G4double newRes = G4Exp((oscStre*G4Log(resEne)+
847 oscStrePlus1*G4Log(resEnePlus1))
848 /(oscStre+oscStrePlus1));
849 (*theTable)[i]->SetResonanceEnergy(newRes);
850 G4double newIon = (oscStre*ionEne+
851 oscStrePlus1*(*theTable)[i+1]->GetIonisationEnergy())/
852 (oscStre+oscStrePlus1);
853 (*theTable)[i]->SetIonisationEnergy(newIon);
854 G4double newStre = oscStre+oscStrePlus1;
855 (*theTable)[i]->SetOscillatorStrength(newStre);
856 G4double newHartree = (oscStre*(*theTable)[i]->GetHartreeFactor()+
857 oscStrePlus1*(*theTable)[i+1]->GetHartreeFactor())/
858 (oscStre+oscStrePlus1);
859 (*theTable)[i]->SetHartreeFactor(newHartree);
860 if ((*theTable)[i]->GetParentZ() != (*theTable)[i+1]->GetParentZ())
861 (*theTable)[i]->SetParentZ(0.);
862 if (shellFlag < 10 || (*theTable)[i+1]->GetShellFlag() < 10)
863 {
864 G4int newFlag = std::min(shellFlag,(*theTable)[i+1]->GetShellFlag());
865 (*theTable)[i]->SetShellFlag(newFlag);
866 }
867 else
868 (*theTable)[i]->SetShellFlag(30);
869 //We've lost anyway the track of the original level
870 (*theTable)[i]->SetParentShellID((*theTable)[i]->GetShellFlag());
871
872
873 if (i<theTable->size()-2)
874 {
875 for (std::size_t ii=i+1;ii<theTable->size()-1;++ii)
876 (*theTable)[ii] = (*theTable)[ii+1];
877 }
878 //G4cout << theTable->size() << G4endl;
879 theTable->erase(theTable->begin()+theTable->size()-1); //delete last element
880 removedLevels++;
881 }
882 }
883 }
884 if (removedLevels)
885 {
886 Nost -= removedLevels;
887 loopAgain = true;
888 }
889 if (Rgroup < 1.414213 || Nost > 64)
890 {
891 Rgroup = Rgroup*Rgroup;
892 loopAgain = true;
893 }
894 //Add protection against infinite loops here
895 if (nLoops > 100 && !removedLevels)
896 loopAgain = false;
897 }while(loopAgain);
898
899 if (fVerbosityLevel > 1)
900 {
901 G4cout << "Final grouping factor for Ionisation: " << Rgroup << G4endl;
902 }
903
904 //Final Electron/Positron model parameters
905 for (std::size_t i=0;i<theTable->size();++i)
906 {
907 //Set cutoff recoil energy for the resonant mode
908 G4double ionEne = (*theTable)[i]->GetIonisationEnergy();
909 if (ionEne < 1e-3*eV)
910 {
911 G4double resEne = (*theTable)[i]->GetResonanceEnergy();
912 (*theTable)[i]->SetIonisationEnergy(0.*eV);
913 (*theTable)[i]->SetCutoffRecoilResonantEnergy(resEne);
914 }
915 else
916 (*theTable)[i]->SetCutoffRecoilResonantEnergy(ionEne);
917 }
918
919 //Last step
920 fOscillatorStoreIonisation->insert(std::make_pair(material,theTable));
921
922 /******************************************
923 SAME FOR COMPTON
924 ******************************************/
925 //
926 //Copy helper in the oscillatorTable for Compton
927 //
928 //Oscillator table Ionisation for the material
929 G4PenelopeOscillatorTable* theTableC = new G4PenelopeOscillatorTable(); //vector of oscillator
930 //order by ionisation energy
931 std::sort(helper->begin(),helper->end());
932 //COPY THE HELPER (vector of object) to theTable (vector of Pointers).
933 for (std::size_t i=0;i<helper->size();++i)
934 {
935 //copy content --> one may need it later (e.g. to fill another table, with variations)
936 G4PenelopeOscillator* theOsc = new G4PenelopeOscillator((*helper)[i]);
937 theTableC->push_back(theOsc);
938 }
939 //Oscillators of outer shells with resonance energies differing by a factor less than
940 //Rgroup are grouped as a single oscillator
941 Rgroup = 1.5;
942 Nost = theTableC->size();
943
944 firstIndex = (isAConductor) ? 1 : 0; //for conductors, skip conduction oscillator
945 loopAgain = false;
946 removedLevels = 0;
947 do
948 {
949 nLoops++;
950 loopAgain = false;
951 if (Nost>firstIndex+1)
952 {
953 removedLevels = 0;
954 for (std::size_t i=firstIndex;i<theTableC->size()-1;++i)
955 {
956 G4bool skipLoop = false;
957 G4double ionEne = (*theTableC)[i]->GetIonisationEnergy();
958 G4double ionEnePlus1 = (*theTableC)[i+1]->GetIonisationEnergy();
959 G4double oscStre = (*theTableC)[i]->GetOscillatorStrength();
960 G4double oscStrePlus1 = (*theTableC)[i+1]->GetOscillatorStrength();
961 //if (shellFlag < 10 && ionEne>cutEnergy) in Penelope
962 if (ionEne>cutEnergy)
963 skipLoop = true;
964 if (ionEne<1.0*eV || ionEnePlus1<1.0*eV)
965 skipLoop = true;
966 if (ionEnePlus1 > Rgroup*ionEne)
967 skipLoop = true;
968
969 if (!skipLoop)
970 {
971 G4double newIon = (oscStre*ionEne+
972 oscStrePlus1*ionEnePlus1)/
973 (oscStre+oscStrePlus1);
974 (*theTableC)[i]->SetIonisationEnergy(newIon);
975 G4double newStre = oscStre+oscStrePlus1;
976 (*theTableC)[i]->SetOscillatorStrength(newStre);
977 G4double newHartree = (oscStre*(*theTableC)[i]->GetHartreeFactor()+
978 oscStrePlus1*(*theTableC)[i+1]->GetHartreeFactor())/
979 (oscStre+oscStrePlus1);
980 (*theTableC)[i]->SetHartreeFactor(newHartree);
981 if ((*theTableC)[i]->GetParentZ() != (*theTableC)[i+1]->GetParentZ())
982 (*theTableC)[i]->SetParentZ(0.);
983 (*theTableC)[i]->SetShellFlag(30);
984 (*theTableC)[i]->SetParentShellID((*theTableC)[i]->GetShellFlag());
985
986 if (i<theTableC->size()-2)
987 {
988 for (std::size_t ii=i+1;ii<theTableC->size()-1;++ii)
989 (*theTableC)[ii] = (*theTableC)[ii+1];
990 }
991 theTableC->erase(theTableC->begin()+theTableC->size()-1); //delete last element
992 removedLevels++;
993 }
994 }
995 }
996 if (removedLevels)
997 {
998 Nost -= removedLevels;
999 loopAgain = true;
1000 }
1001 if (Rgroup < 2.0 || Nost > 64)
1002 {
1003 Rgroup = Rgroup*Rgroup;
1004 loopAgain = true;
1005 }
1006 //Add protection against infinite loops here
1007 if (nLoops > 100 && !removedLevels)
1008 loopAgain = false;
1009 }while(loopAgain);
1010
1011
1012 if (fVerbosityLevel > 1)
1013 {
1014 G4cout << "Final grouping factor for Compton: " << Rgroup << G4endl;
1015 }
1016
1017 //Last step
1018 fOscillatorStoreCompton->insert(std::make_pair(material,theTableC));
1019
1020 //CLEAN UP theHelper and its content
1021 delete helper;
1022 if (fVerbosityLevel > 1)
1023 Dump(material);
1024
1025 return;
1026}
1027
1028//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1029
1030void G4PenelopeOscillatorManager::ReadElementData()
1031{
1032 if (fVerbosityLevel > 0)
1033 {
1034 G4cout << "G4PenelopeOscillatorManager::ReadElementData()" << G4endl;
1035 G4cout << "Going to read Element Data" << G4endl;
1036 }
1037 const char* path = G4FindDataDir("G4LEDATA");
1038 if(!path)
1039 {
1040 G4String excep = "G4PenelopeOscillatorManager - G4LEDATA environment variable not set!";
1041 G4Exception("G4PenelopeOscillatorManager::ReadElementData()",
1042 "em0006",FatalException,excep);
1043 return;
1044 }
1045 G4String pathString(path);
1046 G4String pathFile = pathString + "/penelope/pdatconf.p08";
1047 std::ifstream file(pathFile);
1048
1049 if (!file.is_open())
1050 {
1051 G4String excep = "G4PenelopeOscillatorManager - data file " + pathFile + " not found!";
1052 G4Exception("G4PenelopeOscillatorManager::ReadElementData()",
1053 "em0003",FatalException,excep);
1054 }
1055
1056 G4AtomicTransitionManager* theTransitionManager =
1058 theTransitionManager->Initialise();
1059
1060 //Read header (22 lines)
1061 G4String theHeader;
1062 for (G4int iline=0;iline<22;iline++)
1063 getline(file,theHeader);
1064 //Done
1065 G4int Z=0;
1066 G4int shellCode = 0;
1067 G4String shellId = "NULL";
1068 G4int occupationNumber = 0;
1069 G4double ionisationEnergy = 0.0*eV;
1070 G4double hartreeProfile = 0.;
1071 G4int shellCounter = 0;
1072 G4int oldZ = -1;
1073 G4int numberOfShells = 0;
1074 //Start reading data
1075 for (G4int i=0;!file.eof();i++)
1076 {
1077 file >> Z >> shellCode >> shellId >> occupationNumber >> ionisationEnergy >> hartreeProfile;
1078 if (Z>0 && i<2000)
1079 {
1080 fElementData[0][i] = Z;
1081 fElementData[1][i] = shellCode;
1082 fElementData[2][i] = occupationNumber;
1083 //reset things
1084 if (Z != oldZ)
1085 {
1086 shellCounter = 0;
1087 oldZ = Z;
1088 numberOfShells = theTransitionManager->NumberOfShells(Z);
1089 }
1090 G4double bindingEnergy = -1*eV;
1091 if (shellCounter<numberOfShells)
1092 {
1093 G4AtomicShell* shell = theTransitionManager->Shell(Z,shellCounter);
1094 bindingEnergy = shell->BindingEnergy();
1095 }
1096 //Valid level found in the G4AtomicTransition database: keep it, otherwise use
1097 //the ionisation energy found in the Penelope database
1098 fElementData[3][i] = (bindingEnergy>100*eV) ? bindingEnergy : ionisationEnergy*eV;
1099 fElementData[4][i] = hartreeProfile;
1100 shellCounter++;
1101 }
1102 }
1103 file.close();
1104
1105 if (fVerbosityLevel > 1)
1106 {
1107 G4cout << "G4PenelopeOscillatorManager::ReadElementData(): Data file read" << G4endl;
1108 }
1109 fReadElementData = true;
1110 return;
1111}
1112
1113//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1115{
1116 // (1) First time, create fOscillatorStores and read data
1117 CheckForTablesCreated();
1118
1119 // (2) Check if the material has been already included
1120 if (fExcitationEnergy->count(mat))
1121 return fExcitationEnergy->find(mat)->second;
1122
1123 // (3) If we are here, it means that we have to create the table for the material
1124 BuildOscillatorTable(mat);
1125
1126 // (4) now, the oscillator store should be ok
1127 if (fExcitationEnergy->count(mat))
1128 return fExcitationEnergy->find(mat)->second;
1129 else
1130 {
1131 G4cout << "G4PenelopeOscillatorManager::GetMolecularExcitationEnergy() " << G4endl;
1132 G4cout << "Impossible to retrieve the excitation energy for " << mat->GetName() << G4endl;
1133 return 0;
1134 }
1135}
1136
1137//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1139{
1140 // (1) First time, create fOscillatorStores and read data
1141 CheckForTablesCreated();
1142
1143 // (2) Check if the material has been already included
1144 if (fPlasmaSquared->count(mat))
1145 return fPlasmaSquared->find(mat)->second;
1146
1147 // (3) If we are here, it means that we have to create the table for the material
1148 BuildOscillatorTable(mat);
1149
1150 // (4) now, the oscillator store should be ok
1151 if (fPlasmaSquared->count(mat))
1152 return fPlasmaSquared->find(mat)->second;
1153 else
1154 {
1155 G4cout << "G4PenelopeOscillatorManager::GetPlasmaEnergySquared() " << G4endl;
1156 G4cout << "Impossible to retrieve the plasma energy for " << mat->GetName() << G4endl;
1157 return 0;
1158 }
1159}
1160
1161//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1162
1164{
1165 // (1) First time, create fOscillatorStores and read data
1166 CheckForTablesCreated();
1167
1168 // (2) Check if the material has been already included
1169 if (fAtomsPerMolecule->count(mat))
1170 return fAtomsPerMolecule->find(mat)->second;
1171
1172 // (3) If we are here, it means that we have to create the table for the material
1173 BuildOscillatorTable(mat);
1174
1175 // (4) now, the oscillator store should be ok
1176 if (fAtomsPerMolecule->count(mat))
1177 return fAtomsPerMolecule->find(mat)->second;
1178 else
1179 {
1180 G4cout << "G4PenelopeOscillatorManager::GetAtomsPerMolecule() " << G4endl;
1181 G4cout << "Impossible to retrieve the number of atoms per molecule for "
1182 << mat->GetName() << G4endl;
1183 return 0;
1184 }
1185}
1186
1187//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1188
1190{
1191 // (1) First time, create fOscillatorStores and read data
1192 CheckForTablesCreated();
1193
1194 // (2) Check if the material/Z couple has been already included
1195 std::pair<const G4Material*,G4int> theKey = std::make_pair(mat,Z);
1196 if (fAtomTablePerMolecule->count(theKey))
1197 return fAtomTablePerMolecule->find(theKey)->second;
1198
1199 // (3) If we are here, it means that we have to create the table for the material
1200 BuildOscillatorTable(mat);
1201
1202 // (4) now, the oscillator store should be ok
1203 if (fAtomTablePerMolecule->count(theKey))
1204 return fAtomTablePerMolecule->find(theKey)->second;
1205 else
1206 {
1207 G4cout << "G4PenelopeOscillatorManager::GetAtomsPerMolecule() " << G4endl;
1208 G4cout << "Impossible to retrieve the number of atoms per molecule for Z = "
1209 << Z << " in material " << mat->GetName() << G4endl;
1210 return 0;
1211 }
1212}
std::vector< const G4Element * > G4ElementVector
const char * G4FindDataDir(const char *)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4double G4Log(G4double x)
Definition: G4Log.hh:227
std::vector< G4PenelopeOscillator * > G4PenelopeOscillatorTable
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
G4double BindingEnergy() const
G4AtomicShell * Shell(G4int Z, size_t shellIndex) const
void Initialise()
needs to be called once from other code before start of run
static G4AtomicTransitionManager * Instance()
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:185
G4double GetTotNbOfAtomsPerVolume() const
Definition: G4Material.hh:204
const G4double * GetFractionVector() const
Definition: G4Material.hh:189
size_t GetNumberOfElements() const
Definition: G4Material.hh:181
const G4String & GetName() const
Definition: G4Material.hh:172
G4double GetNumberOfZAtomsPerMolecule(const G4Material *, G4int Z)
G4double GetAtomsPerMolecule(const G4Material *)
Returns the total number of atoms per molecule.
G4PenelopeOscillatorTable * GetOscillatorTableCompton(const G4Material *)
static G4PenelopeOscillatorManager * GetOscillatorManager()
G4PenelopeOscillatorTable * GetOscillatorTableIonisation(const G4Material *)
G4double GetPlasmaEnergySquared(const G4Material *)
Returns the squared plasma energy.
G4double GetTotalZ(const G4Material *)
G4double GetMeanExcitationEnergy(const G4Material *)
Returns the mean excitation energy.
G4PenelopeOscillator * GetOscillatorIonisation(const G4Material *, G4int)
G4PenelopeOscillator * GetOscillatorCompton(const G4Material *, G4int)
G4double GetTotalA(const G4Material *)
Returns the total A for the molecule.
void SetIonisationEnergy(G4double ie)
void SetShellFlag(G4int theflag)
void SetParentShellID(G4int psID)
void SetParentZ(G4double parZ)
void SetOscillatorStrength(G4double ostr)
void SetHartreeFactor(G4double hf)
G4double bindingEnergy(G4int A, G4int Z)
#define G4ThreadLocal
Definition: tls.hh:77