Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLPhaseSpaceGenerator.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
41
42namespace G4INCL {
43
44 namespace {
45 G4ThreadLocal IPhaseSpaceGenerator *thePhaseSpaceGenerator;
46
47 G4ThreadLocal Particle *biasMe;
48
49 /** \brief Actually perform the biasing
50 *
51 * \param particles list of particles to bias
52 * \param pInVec momentum of the particle to be biased before the collision
53 * \param slope the parameter \f$B\f$ in \f$\exp(B\cdot t)\f$
54 */
55 void bias(ParticleList &particles, const ThreeVector &pInVec, const G4double slope) {
56 const G4double pIn = pInVec.mag();
57 const ThreeVector collisionAxis = pInVec/pIn;
58 const ThreeVector pMomVec = biasMe->getMomentum();
59 const G4double pMom = pMomVec.mag();
60 if(pMom ==0.) return;
61 const G4double pMomCosAng = pMomVec.dot(collisionAxis)/pMom;
62 const G4double pMomAng = Math::arcCos(pMomCosAng); // Angle between the original axis of the dominant particle and is new one after generate
63
64 // compute the target angle for the biasing
65 // it is drawn from a exp(Bt) distribution
66 const G4double cosAngSlope = 2e-6 * slope * pIn * pMom;
67 const G4double cosAng = 1. + std::log(1. - Random::shoot()*(1.-std::exp(-2.*cosAngSlope)))/cosAngSlope;
68 const G4double ang = Math::arcCos(cosAng);
69
70 // compute the rotation angle
71 const G4double rotationAngle = ang - pMomAng;
72
73 // generate the rotation axis; it is perpendicular to collisionAxis and
74 // pMomVec
75 ThreeVector rotationAxis;
76 if(pMomAng>1E-10) {
77 rotationAxis = collisionAxis.vector(pMomVec);
78 const G4double axisLength = rotationAxis.mag();
79 const G4double oneOverLength = 1./axisLength;
80 rotationAxis *= oneOverLength;
81 } else {
82 // need to jump through some hoops if collisionAxis is nearly aligned
83 // with pMomVec
84 rotationAxis = collisionAxis.anyOrthogonal();
85 }
86
87 // apply the rotation
88 particles.rotateMomentum(rotationAngle, rotationAxis);
89 }
90
91 }
92
93 namespace PhaseSpaceGenerator {
94 void generate(const G4double sqrtS, ParticleList &particles) {
95 return thePhaseSpaceGenerator->generate(sqrtS, particles);
96 }
97
98 void generateBiased(const G4double sqrtS, ParticleList &particles, const size_t index, const G4double slope) {
99// assert(index<particles.size());
100 // store the incoming momentum of particle[index]; it will be used to
101 // compute t when biasing
102 biasMe = particles[index];
103 const ThreeVector pInVec = biasMe->getMomentum();
104 generate(sqrtS, particles);
105 // Extremely rare event try to bias with vector null
106 if(pInVec.mag() != 0.) bias(particles, pInVec, slope);
107 }
108
110 thePhaseSpaceGenerator = g;
111 }
112
114 return thePhaseSpaceGenerator;
115 }
116
118 delete thePhaseSpaceGenerator;
119 thePhaseSpaceGenerator = NULL;
120 }
121
122 void initialize(Config const * const theConfig) {
124 if(psg==RauboldLynchType)
126 else if(psg==KopylovType)
128 else
130 }
131 }
132}
double G4double
Definition: G4Types.hh:83
PhaseSpaceGeneratorType getPhaseSpaceGeneratorType() const
Get the phase-space-generator type.
Abstract interface for the phase-space generators.
Generate momenta using the Kopylov method.
Generate momenta using the RauboldLynch method.
G4double mag() const
G4double arcCos(const G4double x)
Calculates arccos with some tolerance on illegal arguments.
void initialize(Config const *const theConfig)
void setPhaseSpaceGenerator(IPhaseSpaceGenerator *g)
void generateBiased(const G4double sqrtS, ParticleList &particles, const size_t index, const G4double slope)
Generate a biased event in the CM system.
IPhaseSpaceGenerator * getPhaseSpaceGenerator()
void generate(const G4double sqrtS, ParticleList &particles)
Generate an event in the CM system.
G4double shoot()
Definition: G4INCLRandom.cc:93
#define G4ThreadLocal
Definition: tls.hh:77