Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4VRangeToEnergyConverter.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4VRangeToEnergyConverter class implementation
27//
28// Author: H.Kurashige, 05 October 2002 - First implementation
29// --------------------------------------------------------------------
30
32#include "G4ParticleTable.hh"
33#include "G4Element.hh"
34#include "G4SystemOfUnits.hh"
35#include "G4Log.hh"
36#include "G4Exp.hh"
37#include "G4AutoLock.hh"
38
39namespace
40{
41 G4Mutex theREMutex = G4MUTEX_INITIALIZER;
42}
43
44G4double G4VRangeToEnergyConverter::sEmin = CLHEP::keV;
45G4double G4VRangeToEnergyConverter::sEmax = 10.*CLHEP::GeV;
46
47std::vector<G4double>* G4VRangeToEnergyConverter::sEnergy = nullptr;
48
49G4int G4VRangeToEnergyConverter::sNbinPerDecade = 50;
50G4int G4VRangeToEnergyConverter::sNbin = 350;
51
52// --------------------------------------------------------------------
54{
55 if(nullptr == sEnergy)
56 {
57 G4AutoLock l(&theREMutex);
58 if(nullptr == sEnergy)
59 {
60 isFirstInstance = true;
61 }
62 l.unlock();
63 }
64 // this method defines lock itself
65 if(isFirstInstance)
66 {
67 FillEnergyVector(CLHEP::keV, 10.0*CLHEP::GeV);
68 }
69}
70
71// --------------------------------------------------------------------
73{
74 if(isFirstInstance)
75 {
76 delete sEnergy;
77 sEnergy = nullptr;
78 sEmin = CLHEP::keV;
79 sEmax = 10.*CLHEP::GeV;
80 }
81}
82
83// --------------------------------------------------------------------
85 const G4Material* material)
86{
87#ifdef G4VERBOSE
88 if (GetVerboseLevel()>3)
89 {
90 G4cout << "G4VRangeToEnergyConverter::Convert() - ";
91 G4cout << "Convert for " << material->GetName()
92 << " with Range Cut " << rangeCut/mm << "[mm]" << G4endl;
93 }
94#endif
95
96 G4double cut = 0.0;
97 if(fPDG == 22)
98 {
99 cut = ConvertForGamma(rangeCut, material);
100 }
101 else
102 {
103 cut = ConvertForElectron(rangeCut, material);
104
105 const G4double tune = 0.025*CLHEP::mm*CLHEP::g/CLHEP::cm3;
106 const G4double lowen = 30.*CLHEP::keV;
107 if(cut < lowen)
108 {
109 // corr. should be switched on smoothly
110 cut /= (1.+(1.-cut/lowen)*tune/(rangeCut*material->GetDensity()));
111 }
112 }
113
114 cut = std::max(sEmin, std::min(cut, sEmax));
115 return cut;
116}
117
118// --------------------------------------------------------------------
120 const G4double highedge)
121{
122 G4double ehigh = std::min(10.*CLHEP::GeV, highedge);
123 if(ehigh > lowedge)
124 {
125 FillEnergyVector(lowedge, ehigh);
126 }
127}
128
129// --------------------------------------------------------------------
131{
132 return sEmin;
133}
134
135// --------------------------------------------------------------------
137{
138 return sEmax;
139}
140
141// --------------------------------------------------------------------
142
144{
145 return sEmax;
146}
147
148// --------------------------------------------------------------------
150{
151 G4double ehigh = std::min(10.*CLHEP::GeV, value);
152 if(ehigh > sEmin)
153 {
154 FillEnergyVector(sEmin, ehigh);
155 }
156}
157
158// --------------------------------------------------------------------
159void G4VRangeToEnergyConverter::FillEnergyVector(const G4double emin,
160 const G4double emax)
161{
162 if(emin != sEmin || emax != sEmax || nullptr == sEnergy)
163 {
164 sEmin = emin;
165 sEmax = emax;
166 sNbin = sNbinPerDecade*G4lrint(std::log10(emax/emin));
167 if(nullptr == sEnergy) { sEnergy = new std::vector<G4double>; }
168 sEnergy->resize(sNbin + 1);
169 (*sEnergy)[0] = emin;
170 (*sEnergy)[sNbin] = emax;
171 G4double fact = G4Log(emax/emin)/sNbin;
172 for(G4int i=1; i<sNbin; ++i) { (*sEnergy)[i] = emin*G4Exp(i * fact); }
173 }
174}
175
176// --------------------------------------------------------------------
178G4VRangeToEnergyConverter::ConvertForGamma(const G4double rangeCut,
179 const G4Material* material)
180{
181 const G4ElementVector* elm = material->GetElementVector();
182 const G4double* dens = material->GetAtomicNumDensityVector();
183
184 // fill absorption length vector
185 G4int nelm = (G4int)material->GetNumberOfElements();
186 G4double range1 = 0.0;
187 G4double range2 = 0.0;
188 G4double e1 = 0.0;
189 G4double e2 = 0.0;
190 for (G4int i=0; i<sNbin; ++i)
191 {
192 e2 = (*sEnergy)[i];
193 G4double sig = 0.;
194
195 for (G4int j=0; j<nelm; ++j)
196 {
197 sig += dens[j]*ComputeValue((*elm)[j]->GetZasInt(), e2);
198 }
199 range2 = (sig > 0.0) ? 5./sig : DBL_MAX;
200 if(i == 0 || range2 < rangeCut)
201 {
202 e1 = e2;
203 range1 = range2;
204 }
205 else
206 {
207 break;
208 }
209 }
210 return LiniearInterpolation(e1, e2, range1, range2, rangeCut);
211}
212
213// --------------------------------------------------------------------
215G4VRangeToEnergyConverter::ConvertForElectron(const G4double rangeCut,
216 const G4Material* material)
217{
218 const G4ElementVector* elm = material->GetElementVector();
219 const G4double* dens = material->GetAtomicNumDensityVector();
220
221 // fill absorption length vector
222 G4int nelm = (G4int)material->GetNumberOfElements();
223 G4double dedx1 = 0.0;
224 G4double dedx2 = 0.0;
225 G4double range1 = 0.0;
226 G4double range2 = 0.0;
227 G4double e1 = 0.0;
228 G4double e2 = 0.0;
229 G4double range = 0.;
230 for (G4int i=0; i<sNbin; ++i)
231 {
232 e2 = (*sEnergy)[i];
233 dedx2 = 0.0;
234 for (G4int j=0; j<nelm; ++j)
235 {
236 dedx2 += dens[j]*ComputeValue((*elm)[j]->GetZasInt(), e2);
237 }
238 range += (dedx1 + dedx2 > 0.0) ? 2*(e2 - e1)/(dedx1 + dedx2) : 0.0;
239 range2 = range;
240 if(range2 < rangeCut)
241 {
242 e1 = e2;
243 dedx1 = dedx2;
244 range1 = range2;
245 }
246 else
247 {
248 break;
249 }
250 }
251 return LiniearInterpolation(e1, e2, range1, range2, rangeCut);
252}
253
254// --------------------------------------------------------------------
std::vector< const G4Element * > G4ElementVector
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4double G4Log(G4double x)
Definition: G4Log.hh:227
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:85
std::mutex G4Mutex
Definition: G4Threading.hh:81
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
G4double GetDensity() const
Definition: G4Material.hh:175
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:185
size_t GetNumberOfElements() const
Definition: G4Material.hh:181
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:211
const G4String & GetName() const
Definition: G4Material.hh:172
static void SetMaxEnergyCut(const G4double value)
virtual G4double ComputeValue(const G4int Z, const G4double kinEnergy)=0
virtual G4double Convert(const G4double rangeCut, const G4Material *material)
static void SetEnergyRange(const G4double lowedge, const G4double highedge)
int G4lrint(double ad)
Definition: templates.hh:134
#define DBL_MAX
Definition: templates.hh:62