Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4LegendrePolynomial.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25
26#include "G4ios.hh"
28#include "G4Pow.hh"
29#include "G4Exp.hh"
30#include "G4Log.hh"
31
32using namespace std;
33
35{
36 if(order >= fCoefficients.size()) BuildUpToOrder(order);
37 if(order >= fCoefficients.size() ||
38 i/2 >= fCoefficients[order].size() ||
39 (i%2) != order %2) return 0;
40 return fCoefficients[order][i/2];
41}
42
44{
45 // Call EvalAssocLegendrePoly with m=0
46 return (EvalAssocLegendrePoly(order,0,x));
47}
48
50 map<G4int, map<G4int, G4double> >* cache)
51{
52 // Calculate P_l^m(x).
53 // If cache ptr is non-null, use cache[l][m] if it exists, otherwise compute
54 // P_l^m(x) and cache it in that position. The cache speeds up calculations
55 // where many P_l^m computations are need at the same value of x.
56
57 if(l<0 || m<-l || m>l) return 0;
58 G4Pow* g4pow = G4Pow::GetInstance();
59
60 // Use non-log factorial for low l, m: it is more efficient until
61 // l and m get above 10 or so.
62 // FIXME: G4Pow doesn't check whether the argument gets too large,
63 // which is unsafe! Max is 512; VI: It is assume that Geant4 does not
64 // need higher order
65 if(m<0) {
66 G4double value = (m%2 ? -1. : 1.) * EvalAssocLegendrePoly(l, -m, x);
67 if(l < 10) return value * g4pow->factorial(l+m)/g4pow->factorial(l-m);
68 else { return value * G4Exp(g4pow->logfactorial(l+m) - g4pow->logfactorial(l-m));
69 }
70 }
71
72 // hard-code the first few orders for speed
73 if(l==0) return 1;
74 if(l==1) {
75 if(m==0){return x;}
76 /*m==1*/ return -sqrt(1.-x*x);
77 }
78 if(l<5) {
79 G4double x2 = x*x;
80 if(l==2) {
81 if(m==0){return 0.5*(3.*x2 - 1.);}
82 if(m==1){return -3.*x*sqrt(1.-x2);}
83 /*m==2*/ return 3.*(1.-x2);
84 }
85 if(l==3) {
86 if(m==0){return 0.5*(5.*x*x2 - 3.*x);}
87 if(m==1){return -1.5*(5.*x2-1.)*sqrt(1.-x2);}
88 if(m==2){return 15.*x*(1.-x2);}
89 /*m==3*/ return -15.*(1.-x2)*sqrt(1.-x2);
90 }
91 if(l==4) {
92 if(m==0){return 0.125*(35.*x2*x2 - 30.*x2 + 3.);}
93 if(m==1){return -2.5*(7.*x*x2-3.*x)*sqrt(1.-x2);}
94 if(m==2){return 7.5*(7.*x2-1.)*(1.-x2);}
95 if(m==3){return -105.*x*(1.-x2)*sqrt(1.-x2);}
96 /*m==4*/ return 105.*(1. - 2.*x2 + x2*x2);
97 }
98 }
99
100 // Easy special cases
101 // FIXME: G4Pow doesn't check whether the argument gets too large, which is unsafe! Max is 512.
102 if(m==l) return (l%2 ? -1. : 1.) *
103 G4Exp(g4pow->logfactorial(2*l) - g4pow->logfactorial(l)) *
104 G4Exp(G4Log((1.-x*x)*0.25)*0.5*G4double(l));
105 if(m==l-1) return x*(2.*G4double(m)+1.)*EvalAssocLegendrePoly(m,m,x);
106
107 // See if we have this value cached.
108 if(cache != NULL && cache->count(l) > 0 && (*cache)[l].count(m) > 0) {
109 return (*cache)[l][m];
110 }
111
112 // Otherwise calculate recursively
113 G4double value = (x*G4double(2*l-1)*EvalAssocLegendrePoly(l-1,m,x) -
114 (G4double(l+m-1))*EvalAssocLegendrePoly(l-2,m,x))/G4double(l-m);
115
116 // If we are working with a cache, cache this value.
117 if(cache != NULL) {
118 (*cache)[l][m] = value;
119 }
120 return value;
121}
122
124{
125 if(orderMax > 30) {
126 G4cout << "G4LegendrePolynomial::GetCoefficient(): "
127 << "I refuse to make a Legendre Polynomial of order "
128 << orderMax << G4endl;
129 return;
130 }
131 while(fCoefficients.size() < orderMax+1) { /* Loop checking, 30-Oct-2015, G.Folger */
132 size_t order = fCoefficients.size();
133 fCoefficients.resize(order+1);
134 if(order <= 1) fCoefficients[order].push_back(1.);
135 else {
136 for(size_t iCoeff = 0; iCoeff < order+1; ++iCoeff) {
137 if((order % 2) == (iCoeff % 2)) {
138 G4double coeff = 0;
139 if(iCoeff <= order-2) coeff -= fCoefficients[order-2][iCoeff/2]*G4double(order-1);
140 if(iCoeff > 0) coeff += fCoefficients[order-1][(iCoeff-1)/2]*G4double(2*order-1);
141 coeff /= G4double(order);
142 fCoefficients[order].push_back(coeff);
143 }
144 }
145 }
146 }
147}
148
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4double G4Log(G4double x)
Definition: G4Log.hh:227
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
G4double EvalAssocLegendrePoly(G4int l, G4int m, G4double x, std::map< G4int, std::map< G4int, G4double > > *cache=NULL)
G4double GetCoefficient(size_t i, size_t order)
G4double EvalLegendrePoly(G4int order, G4double x)
std::vector< std::vector< G4double > > fCoefficients
void BuildUpToOrder(size_t order)
Definition: G4Pow.hh:49
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double factorial(G4int Z) const
Definition: G4Pow.hh:235
G4double logfactorial(G4int Z) const
Definition: G4Pow.hh:237