Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4UCNAbsorption.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27///////////////////////////////////////////////////////////////////////
28// UCN Absorption Class Implementation
29///////////////////////////////////////////////////////////////////////
30//
31// File: G4UCNAbsorption.cc
32// Description: Discrete Process -- Absorption of Ultra Cold Neutrons
33// Version: 1.0
34// Created: 2014-05-12
35// Author: Peter Gumplinger
36// adopted from Geant4UCN by Peter Fierlinger (7.9.04) and
37// Marcin Kuzniak (21.4.06)
38// 1/v energy dependent absorption cross section
39// inside materials
40// Updated:
41//
42// mail: gum@triumf.ca
43//
44///////////////////////////////////////////////////////////////////////
45
47
48#include "G4UCNAbsorption.hh"
49
50//#include "G4Nucleus.hh"
51//#include "G4ReactionProduct.hh"
52//#include "G4NucleiPropertiesTable.hh"
53
54#include "G4SystemOfUnits.hh"
56
57/////////////////////////
58// Class Implementation
59/////////////////////////
60
61 //////////////
62 // Operators
63 //////////////
64
65// G4UCNAbsorption::operator=(const G4UCNAbsorption &right)
66// {
67// }
68
69 /////////////////
70 // Constructors
71 /////////////////
72
74 : G4VDiscreteProcess(processName, type)
75{
76 if (verboseLevel>0) G4cout << GetProcessName() << " is created " << G4endl;
77
79}
80
81// G4UCNAbsorption::G4UCNAbsorption(const G4UCNAbsorpton &right)
82// {
83// }
84
85 ////////////////
86 // Destructors
87 ////////////////
88
90
91 ////////////
92 // Methods
93 ////////////
94
95// PostStepDoIt
96// -------------
97
99G4UCNAbsorption::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
100{
102
104
105 if ( verboseLevel > 0 ) G4cout << "UCNABSORPTION at: "
106 << aTrack.GetProperTime()/s << "s, "
107 << aTrack.GetGlobalTime()/s << "s. "
108 << ", after track length " << aTrack.GetTrackLength()/cm << "cm, "
109 << "in volume "
111 << G4endl;
112
113 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
114}
115
116// GetMeanFreePath
117// ---------------
118
120 G4double ,
122{
123 G4double AttenuationLength = DBL_MAX;
124
125 const G4Material* aMaterial = aTrack.GetMaterial();
126 G4MaterialPropertiesTable* aMaterialPropertiesTable =
127 aMaterial->GetMaterialPropertiesTable();
128
129 G4double losscs = 0.0;
130 if (aMaterialPropertiesTable) {
131 losscs = aMaterialPropertiesTable->GetConstProperty("ABSCS");
132// if (losscs == 0.0)
133// G4cout << "No UCN Absorption length specified" << G4endl;
134 }
135// else G4cout << "No UCN Absorption length specified" << G4endl;
136
137 if (losscs) {
138
139 // Calculate a UCN absorption length for this cross section
140
141 // *** Thermal boost ***
142
143 // Prepare neutron
144
145 //G4double theA = aMaterial->GetElement(0)->GetN();
146 //G4double theZ = aMaterial->GetElement(0)->GetZ();
147
148 //G4ReactionProduct
149 // theNeutron(const_cast<G4ParticleDefinition *>(aTrack.GetDefinition()));
150 //theNeutron.SetMomentum(aTrack.GetMomentum());
151 //theNeutron.SetKineticEnergy(aTrack.GetKineticEnergy());
152 //G4ThreeVector neuVelo = theNeutron.GetMomentum()/
153 // aTrack.GetDefinition()->GetPDGMass());
154
155 // Prepare properly biased thermal nucleus
156
157 //G4double theA = aMaterial->GetElement(0)->GetN();
158 //G4double theZ = aMaterial->GetElement(0)->GetZ();
159
160 //G4double eps = 0.0001;
161
162 //G4double eleMass =
163 // G4NucleiPropertiesTable::
164 // GetNuclearMass(static_cast<G4int>(theZ+eps),
165 // static_cast<G4int>(theA+eps)))
166 // / G4Neutron::Neutron()->GetPDGMass();
167
168 //G4Nucleus aNuc;
169
170 //G4ReactionProduct aThermalNuc =
171 // aNuc.GetBiasedThermalNucleus(eleMass,
172 // neuVelo,
173 // aMaterial->GetTemperature());
174
175 // Boost to rest system and return
176
177 //G4ReactionProduct boosted;
178 //boosted.Lorentz(theNeutron, aThermalNuc);
179
180 //G4double vel = sqrt(2*boosted.GetKineticEnergy()/
181 // neutron_mass_c2*c_squared);
182
183 G4double density = aMaterial->GetTotNbOfAtomsPerVolume();
184
185 // Calculate cross section for a constant loss
186
187 G4double vel = aTrack.GetVelocity();
188
189 //G4cout << aTrack.GetVelocity()/meter*second << " "
190 // << vel/meter*second << "meters/second" << G4endl;
191
192 // Input data is normally taken from the website:
193 // http://rrdjazz.nist.gov/resources/n-lengths/list.html
194 // and coresponds to 2200 m/s fast neutrons
195
196 G4double crossect = losscs*barn*2200.*meter/second/vel;
197
198 // In principle, if one asks for the MaterialProperty incoherent cross
199 // section, one could put the formula for inelastic up scattering here
200 // and add the cross section to the absorption
201
202 // sigma inelastic = ... ignatovic, p. 174.
203
204 // attenuation length in mm
205 AttenuationLength = 1./density/crossect;
206
207 if (verboseLevel>0) G4cout << "UCNABSORPTION with"
208 << " AttenuationLength: " << AttenuationLength/m << "m"
209 << " CrossSection: " << crossect/barn << "barn" << G4endl;
210 }
211
212 return AttenuationLength;
213}
G4ForceCondition
G4ProcessType
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
@ fUCNAbsorption
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
G4double GetConstProperty(const G4String &key) const
G4MaterialPropertiesTable * GetMaterialPropertiesTable() const
Definition: G4Material.hh:251
G4double GetTotNbOfAtomsPerVolume() const
Definition: G4Material.hh:204
void Initialize(const G4Track &) override
G4VPhysicalVolume * GetPhysicalVolume() const
Definition: G4Step.hh:62
G4StepPoint * GetPostStepPoint() const
G4double GetVelocity() const
G4double GetTrackLength() const
G4double GetGlobalTime() const
G4double GetProperTime() const
G4Material * GetMaterial() const
G4double GetMeanFreePath(const G4Track &aTrack, G4double, G4ForceCondition *condition)
virtual ~G4UCNAbsorption()
G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep)
G4UCNAbsorption(const G4String &processName="UCNAbsorption", G4ProcessType type=fUCN)
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeTrackStatus(G4TrackStatus status)
const G4String & GetName() const
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:331
G4int verboseLevel
Definition: G4VProcess.hh:360
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:410
const G4String & GetProcessName() const
Definition: G4VProcess.hh:386
#define DBL_MAX
Definition: templates.hh:62