Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4XTRRegularRadModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26
28
30
31////////////////////////////////////////////////////////////////////////////
32// Constructor, destructor
34 G4Material* foilMat,
35 G4Material* gasMat, G4double a,
36 G4double b, G4int n,
37 const G4String& processName)
38 : G4VXTRenergyLoss(anEnvelope, foilMat, gasMat, a, b, n, processName)
39{
40 G4cout << " XTR Regular discrete radiator model is called" << G4endl;
41
42 fExitFlux = true;
43}
44
45///////////////////////////////////////////////////////////////////////////
47
48///////////////////////////////////////////////////////////////////////////
49void G4XTRRegularRadModel::ProcessDescription(std::ostream& out) const
50{
51 out << "Describes X-ray transition radiation with thickness of gaps and "
52 "plates\n"
53 "fixed.\n";
54}
55
56///////////////////////////////////////////////////////////////////////////
58{
59 static constexpr G4double cofPHC = 4. * pi * hbarc;
60 G4double result, sum = 0., tmp, cof1, cof2, cofMin, theta2, theta2k;
61 G4double aMa, bMb, sigma, dump;
62 G4int k, kMax, kMin;
63
64 aMa = fPlateThick * GetPlateLinearPhotoAbs(energy);
65 bMb = fGasThick * GetGasLinearPhotoAbs(energy);
66 sigma = 0.5 * (aMa + bMb);
67 dump = std::exp(-fPlateNumber * sigma);
68 if(verboseLevel > 2)
69 G4cout << " dump = " << dump << G4endl;
70 tmp = (fSigma1 - fSigma2) / cofPHC / energy;
71 cof1 = fPlateThick * tmp;
72 cof2 = fGasThick * tmp;
73
74 cofMin = energy * (fPlateThick + fGasThick) / fGamma / fGamma;
75 cofMin += (fPlateThick * fSigma1 + fGasThick * fSigma2) / energy;
76 cofMin /= cofPHC;
77
78 theta2 = cofPHC / (energy * (fPlateThick + fGasThick));
79
80 kMin = G4int(cofMin);
81 if(cofMin > kMin)
82 kMin++;
83
84 kMax = kMin + 49;
85
86 if(verboseLevel > 2)
87 {
88 G4cout << cof1 << " " << cof2 << " " << cofMin << G4endl;
89 G4cout << "kMin = " << kMin << "; kMax = " << kMax << G4endl;
90 }
91 for(k = kMin; k <= kMax; ++k)
92 {
93 tmp = pi * fPlateThick * (k + cof2) / (fPlateThick + fGasThick);
94 result = (k - cof1) * (k - cof1) * (k + cof2) * (k + cof2);
95 if(k == kMin && kMin == G4int(cofMin))
96 {
97 sum +=
98 0.5 * std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result;
99 }
100 else
101 {
102 sum += std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result;
103 }
104 theta2k = std::sqrt(theta2 * std::abs(k - cofMin));
105
106 if(verboseLevel > 2)
107 {
108 G4cout << k << " " << theta2k << " "
109 << std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result
110 << " " << sum << G4endl;
111 }
112 }
113 result = 2 * (cof1 + cof2) * (cof1 + cof2) * sum / energy;
114 result *= dump * (-1 + dump + 2 * fPlateNumber);
115
116 return result;
117}
118
119///////////////////////////////////////////////////////////////////////////
120// Approximation for radiator interference factor for the case of
121// fully Regular radiator. The plate and gas gap thicknesses are fixed.
122// The mean values of the plate and gas gap thicknesses
123// are supposed to be about XTR formation zones but much less than
124// mean absorption length of XTR photons in corresponding material.
126 G4double varAngle)
127{
128 G4double aZa = fPlateThick / GetPlateFormationZone(energy, gamma, varAngle);
129 G4double bZb = fGasThick / GetGasFormationZone(energy, gamma, varAngle);
130
133
134 G4double Qa = std::exp(-aMa);
135 G4double Qb = std::exp(-bMb);
136 G4double Q = Qa * Qb;
137
138 G4complex Ha(std::exp(-0.5 * aMa) * std::cos(aZa),
139 -std::exp(-0.5 * aMa) * std::sin(aZa));
140
141 G4complex Hb(std::exp(-0.5 * bMb) * std::cos(bZb),
142 -std::exp(-0.5 * bMb) * std::sin(bZb));
143
144 G4complex H = Ha * Hb;
145 G4complex Hs = std::conj(H);
146
147 G4complex F2 = (1.0 - Ha) * (Qa - Ha) * Hb * (1.0 - Hs) * (Q - Hs);
148 F2 *= std::pow(Q, G4double(fPlateNumber)) - std::pow(H, fPlateNumber);
149
150 G4double result = (1. - std::pow(Q, G4double(fPlateNumber))) / (1. - Q);
151 result *= (1. - Qa) * (1. + Qa - 2. * std::sqrt(Qa) * std::cos(aZa));
152 result /= (1. - std::sqrt(Q)) * (1. - std::sqrt(Q)) +
153 4. * std::sqrt(Q) * std::sin(0.5 * (aZa + bZb)) *
154 std::sin(0.5 * (aZa + bZb));
155
156 G4double I2 = 1.;
157 I2 /= (1. - std::sqrt(Q)) * (1. - std::sqrt(Q)) +
158 4. * std::sqrt(Q) * std::sin(0.5 * (aZa + bZb)) *
159 std::sin(0.5 * (aZa + bZb));
160
161 I2 /= Q * ((std::sqrt(Q) - std::cos(aZa + bZb)) *
162 (std::sqrt(Q) - std::cos(aZa + bZb)) +
163 std::sin(aZa + bZb) * std::sin(aZa + bZb));
164
165 G4complex stack = 2. * I2 * F2;
166 stack += result;
167 stack *= OneInterfaceXTRdEdx(energy, gamma, varAngle);
168
169 return std::real(stack);
170}
double G4double
Definition: G4Types.hh:83
std::complex< G4double > G4complex
Definition: G4Types.hh:88
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
G4int verboseLevel
Definition: G4VProcess.hh:360
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasFormationZone(G4double, G4double, G4double)
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double GetGasLinearPhotoAbs(G4double)
G4double SpectralXTRdEdx(G4double energy) override
void ProcessDescription(std::ostream &) const override
G4XTRRegularRadModel(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRegularModel")
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle) override