Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsKaonPlusInelasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28//
29//
30// G4 Physics class: G4QKaonPlusNuclearCrossSection for gamma+A cross sections
31// Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
32// The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
33//
34// --------------------------------------------------------------------------------
35// Short description: Cross-sections extracted from the CHIPS package for
36// kaon(minus)-nuclear interactions. Author: M. Kossov
37// -------------------------------------------------------------------------------------
38//
39
41#include "G4SystemOfUnits.hh"
42#include "G4DynamicParticle.hh"
44#include "G4KaonPlus.hh"
45#include "G4Proton.hh"
46#include "G4PionPlus.hh"
47#include "G4AutoLock.hh"
48
49// factory
51//
53
54namespace {
55 const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
56 const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
57 const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
58 const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
59 const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
60 const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
61 const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
62 const G4int nH=224; // A#of HEN points in lnE
63 const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part
64 const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent)
65 const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
66 const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
67 const G4double third=1./3.;
69 G4double prM;// = G4Proton::Proton()->GetPDGMass(); // Proton mass in MeV
70 G4double piM;// = G4PionPlus::PionPlus()->GetPDGMass()+.1; // Pion mass in MeV+Safety (WP)??
71 G4double pM;// = G4KaonPlus::KaonPlus()->GetPDGMass(); // Projectile mass in MeV
72 G4double tpM;//= pM+pM; // Doubled projectile mass (MeV)
73}
74
76{
77 G4AutoLock l(&initM);
78 prM = G4Proton::Proton()->GetPDGMass(); // Proton mass in MeV
79 piM = G4PionPlus::PionPlus()->GetPDGMass()+.1; // Pion mass in MeV+Safety (WP)??
80 pM = G4KaonPlus::KaonPlus()->GetPDGMass(); // Projectile mass in MeV
81 tpM = pM+pM; // Doubled projectile mass (MeV)
82 l.unlock();
83 // Initialization of the
84 lastLEN=0; // Pointer to the lastArray of LowEn CS
85 lastHEN=0; // Pointer to the lastArray of HighEn CS
86 lastN=0; // The last N of calculated nucleus
87 lastZ=0; // The last Z of calculated nucleus
88 lastP=0.; // Last used in cross section Momentum
89 lastTH=0.; // Last threshold momentum
90 lastCS=0.; // Last value of the Cross Section
91 lastI=0; // The last position in the DAMDB
92 LEN = new std::vector<G4double*>;
93 HEN = new std::vector<G4double*>;
94}
95
97{
98 std::size_t lens=LEN->size();
99 for(std::size_t i=0; i<lens; ++i) delete[] (*LEN)[i];
100 delete LEN;
101
102 std::size_t hens=HEN->size();
103 for(std::size_t i=0; i<hens; ++i) delete[] (*HEN)[i];
104 delete HEN;
105}
106
107void
109{
110 outFile << "G4ChipsKaonPlusInelasticXS provides the inelastic cross\n"
111 << "section for K+ nucleus scattering as a function of incident\n"
112 << "momentum. The cross section is calculated using M. Kossov's\n"
113 << "CHIPS parameterization of cross section data.\n";
114}
115
117 const G4Element*,
118 const G4Material*)
119{
120 return true;
121}
122
123
124// The main member function giving the collision cross section (P is in IU, CS is in mb)
125// Make pMom in independent units ! (Now it is MeV)
127 const G4Isotope*,
128 const G4Element*,
129 const G4Material*)
130{
131 G4double pMom=Pt->GetTotalMomentum();
132 G4int tgN = A - tgZ;
133
134 return GetChipsCrossSection(pMom, tgZ, tgN, 321);
135}
136
138{
139
140 G4bool in=false; // By default the isotope must be found in the AMDB
141 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
142 {
143 in = false; // By default the isotope haven't be found in AMDB
144 lastP = 0.; // New momentum history (nothing to compare with)
145 lastN = tgN; // The last N of the calculated nucleus
146 lastZ = tgZ; // The last Z of the calculated nucleus
147 lastI = (G4int)colN.size(); // Size of the Associative Memory DB in the heap
148 j = 0; // A#0f records found in DB for this projectile
149
150 if(lastI) for(G4int i=0; i<lastI; ++i) // AMDB exists, try to find the (Z,N) isotope
151 {
152 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
153 {
154 lastI=i; // Remember the index for future fast/last use
155 lastTH =colTH[i]; // The last THreshold (A-dependent)
156
157 if(pMom<=lastTH)
158 {
159 return 0.; // Energy is below the Threshold value
160 }
161 lastP =colP [i]; // Last Momentum (A-dependent)
162 lastCS =colCS[i]; // Last CrossSect (A-dependent)
163 in = true; // This is the case when the isotop is found in DB
164 // Momentum pMom is in IU ! @@ Units
165 lastCS=CalculateCrossSection(-1,j,321,lastZ,lastN,pMom); // read & update
166
167 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
168 {
169 lastCS=0.;
170 lastTH=pMom;
171 }
172 break; // Go out of the LOOP
173 }
174 j++; // Increment a#0f records found in DB
175 }
176 if(!in) // This isotope has not been calculated previously
177 {
178 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
179 lastCS=CalculateCrossSection(0,j,321,lastZ,lastN,pMom); //calculate & create
180
181 //if(lastCS>0.) // It means that the AMBD was initialized
182 //{
183
184 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
185 colN.push_back(tgN);
186 colZ.push_back(tgZ);
187 colP.push_back(pMom);
188 colTH.push_back(lastTH);
189 colCS.push_back(lastCS);
190 //} // M.K. Presence of H1 with high threshold breaks the syncronization
191 return lastCS*millibarn;
192 } // End of creation of the new set of parameters
193 else
194 {
195 colP[lastI]=pMom;
196 colCS[lastI]=lastCS;
197 }
198 } // End of parameters udate
199 else if(pMom<=lastTH)
200 {
201 return 0.; // Momentum is below the Threshold Value -> CS=0
202 }
203 else // It is the last used -> use the current tables
204 {
205 lastCS=CalculateCrossSection(1,j,321,lastZ,lastN,pMom); // Only read and UpdateDB
206 lastP=pMom;
207 }
208 return lastCS*millibarn;
209}
210
211// The main member function giving the gamma-A cross section (E in GeV, CS in mb)
212G4double G4ChipsKaonPlusInelasticXS::CalculateCrossSection(G4int F, G4int I,
213 G4int, G4int targZ, G4int targN, G4double Momentum)
214{
215 G4double sigma=0.;
216 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
217 G4double A=targN+targZ; // A of the target
218
219 if(F<=0) // This isotope was not the last used isotop
220 {
221 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
222 {
223 G4int sync=(G4int)LEN->size();
224 if(sync<=I) G4cerr<<"*!*G4ChipsKPlusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
225 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
226 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
227 }
228 else // This isotope wasn't calculated before => CREATE
229 {
230 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
231 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
232 // --- Instead of making a separate function ---
233 G4double P=THmiG; // Table threshold in GeV/c
234 for(G4int k=0; k<nL; k++)
235 {
236 lastLEN[k] = CrossSectionLin(targZ, targN, P);
237 P+=dPG;
238 }
239 G4double lP=milPG;
240 for(G4int n=0; n<nH; n++)
241 {
242 lastHEN[n] = CrossSectionLog(targZ, targN, lP);
243 lP+=dlP;
244 }
245 // --- End of possible separate function
246 // *** The synchronization check ***
247 G4int sync=(G4int)LEN->size();
248 if(sync!=I)
249 {
250 G4cerr<<"***G4ChipsKPlusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
251 <<", N="<<targN<<", F="<<F<<G4endl;
252 //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
253 }
254 LEN->push_back(lastLEN); // remember the Low Energy Table
255 HEN->push_back(lastHEN); // remember the High Energy Table
256 } // End of creation of the new set of parameters
257 } // End of parameters udate
258 // =--------------------------= NOW the Magic Formula =---------------------------------=
259
260 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
261 else if (Momentum<Pmin) // Low Energy region
262 {
263 if(A<=1. && Momentum < 600.) sigma=0.; // Approximation tot/el uncertainty
264 else sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
265 }
266 else if (Momentum<Pmax) // High Energy region
267 {
268 G4double lP=std::log(Momentum);
269 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
270 }
271 else // UHE region (calculation, not frequent)
272 {
273 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
274 sigma=CrossSectionFormula(targZ, targN, P, std::log(P));
275 }
276 if(sigma<0.) return 0.;
277 return sigma;
278}
279
280// Electromagnetic momentum-threshold (in MeV/c)
281G4double G4ChipsKaonPlusInelasticXS::ThresholdMomentum(G4int tZ, G4int tN)
282{
283 G4double tA=tZ+tN;
284 if(tZ<.99 || tN<0.) return 0.;
285 G4double tM=931.5*tA;
286 G4double dE=piM; // At least one Pi0 must be created
287 if(tZ==1 && tN==0) tM=prM; // A threshold on the free proton
288 else dE=tZ/(1.+std::pow(tA,third)); // Safety for diffused edge of the nucleus (QE)
289 //G4double dE=1.263*tZ/(1.+std::pow(tA,third));
290 G4double T=dE+dE*(dE/2+pM)/tM;
291 return std::sqrt(T*(tpM+T));
292}
293
294// Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
295G4double G4ChipsKaonPlusInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
296{
297 G4double lP=std::log(P);
298 return CrossSectionFormula(tZ, tN, P, lP);
299}
300
301// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
302G4double G4ChipsKaonPlusInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
303{
304 G4double P=std::exp(lP);
305 return CrossSectionFormula(tZ, tN, P, lP);
306}
307// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
308G4double G4ChipsKaonPlusInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
309 G4double P, G4double lP)
310{
311 G4double sigma=0.;
312 if(tZ==1 && !tN) // KPlus-Proton interaction from G4QuasiElRatios
313 {
314 G4double ld=lP-3.5;
315 G4double ld2=ld*ld;
316 G4double sp=std::sqrt(P);
317 G4double p2=P*P;
318 G4double p4=p2*p2;
319 G4double lm=P-1.;
320 G4double md=lm*lm+.372;
321 G4double El=(.0557*ld2+2.23)/(1.-.7/sp+.1/p4);
322 G4double To=(.3*ld2+19.5)/(1.+.46/sp+1.6/p4);
323 sigma=(To-El)+.6/md;
324 }
325 else if(tZ<97 && tN<152) // General solution
326 {
327 G4double p2=P*P;
328 G4double p4=p2*p2;
329 G4double a=tN+tZ; // A of the target
330 G4double al=std::log(a);
331 G4double sa=std::sqrt(a);
332 G4double asa=a*sa;
333 G4double a2=a*a;
334 G4double a3=a2*a;
335 G4double a4=a2*a2;
336 G4double a8=a4*a4;
337 G4double a12=a8*a4;
338 G4double f=.6; // Default values for deutrons
339 G4double r=.5;
340 G4double gg=3.7;
341 G4double c=36.;
342 G4double ss=3.5;
343 G4double t=3.;
344 G4double u=.44;
345 G4double v=5.E-9;
346 if(tZ>1 && tN>1) // More than deuteron
347 {
348 f=1.;
349 r=1./(1.+.007*a2);
350 gg=4.2;
351 c=52.*std::exp(al*.6)*(1.+95./a2)/(1.+9./a)/(1.+46./a2);
352 ss=(40.+.14*a)/(1.+12./a);
353 G4double y=std::exp(al*1.7);
354 t=.185*y/(1.+.00012*y);
355 u=(1.+80./asa)/(1.+200./asa);
356 v=(1.+3.E-6*a4*(1.+6.E-7*a3+4.E10/a12))/a3/20000.;
357 }
358 G4double d=lP-gg;
359 G4double w=P-1.;
360 G4double rD=ss/(w*w+.36);
361 G4double h=P-.44;
362 G4double rR=t/(h*h+u*u);
363 sigma=(f*d*d+c)/(1.+r/std::sqrt(P)+1./p4)+(rD+rR)/(1+v/p4/p4);
364 }
365 else
366 {
367 G4cerr<<"-Warning-G4ChipsKaonPlusNuclearCroSect::CSForm:Bad A, Z="<<tZ<<", N="<<tN<<G4endl;
368 sigma=0.;
369 }
370 if(sigma<0.) return 0.;
371 return sigma;
372}
373
374G4double G4ChipsKaonPlusInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
375{
376 if(DX<=0. || N<2)
377 {
378 G4cerr<<"***G4ChipsKaonPlusInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
379 return Y[0];
380 }
381
382 G4int N2=N-2;
383 G4double d=(X-X0)/DX;
384 G4int jj=static_cast<int>(d);
385 if (jj<0) jj=0;
386 else if(jj>N2) jj=N2;
387 d-=jj; // excess
388 G4double yi=Y[jj];
389 G4double sigma=yi+(Y[jj+1]-yi)*d;
390
391 return sigma;
392}
#define G4_DECLARE_XS_FACTORY(cross_section)
G4double Y(G4double density)
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:85
std::mutex G4Mutex
Definition: G4Threading.hh:81
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4double A[17]
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition: G4ios.hh:57
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
virtual void CrossSectionDescription(std::ostream &) const
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4double GetTotalMomentum() const
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:112
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:97
static G4Proton * Proton()
Definition: G4Proton.cc:92
#define N
Definition: crc32.c:56