Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4TransitionRadiation.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4TransitionRadiation class -- implementation file
27
28// GEANT 4 class implementation file --- Copyright CERN 1995
29
30// For information related to this code, please, contact
31// CERN, CN Division, ASD Group
32// History:
33// 1st version 11.09.97 V. Grichine ([email protected] )
34// 2nd version 16.12.97 V. Grichine
35// 3rd version 28.07.05, P.Gumplinger add G4ProcessType to constructor
36
37//#include <cmath>
38
40
41#include "G4EmProcessSubType.hh"
42
43///////////////////////////////////////////////////////////////////////
44// Constructor for selected couple of materials
46 G4ProcessType type)
47 : G4VDiscreteProcess(processName, type)
48{
51
53 fSigma1 = fSigma2 = 0.0;
54}
55
56//////////////////////////////////////////////////////////////////////
57// Destructor
59
60void G4TransitionRadiation::ProcessDescription(std::ostream& out) const
61{
62 out << "Base class for simulation of x-ray transition radiation.\n";
63}
64
66 const G4ParticleDefinition& aParticleType)
67{
68 return (aParticleType.GetPDGCharge() != 0.0);
69}
70
73{
75 return DBL_MAX; // so TR doesn't limit mean free path
76}
77
79 const G4Step&)
80{
82 return &aParticleChange;
83}
84
85///////////////////////////////////////////////////////////////////
86// Sympson integral of TR spectral-angle density over energy between
87// the limits energy 1 and energy2 at fixed varAngle = 1 - std::cos(Theta)
89 G4double energy2,
90 G4double varAngle) const
91{
92 G4int i;
93 G4double h, sumEven = 0.0, sumOdd = 0.0;
94 h = 0.5 * (energy2 - energy1) / fSympsonNumber;
95 for(i = 1; i < fSympsonNumber; i++)
96 {
97 sumEven += SpectralAngleTRdensity(energy1 + 2 * i * h, varAngle);
98 sumOdd += SpectralAngleTRdensity(energy1 + (2 * i - 1) * h, varAngle);
99 }
100 sumOdd +=
101 SpectralAngleTRdensity(energy1 + (2 * fSympsonNumber - 1) * h, varAngle);
102 return h *
103 (SpectralAngleTRdensity(energy1, varAngle) +
104 SpectralAngleTRdensity(energy2, varAngle) + 4.0 * sumOdd +
105 2.0 * sumEven) /
106 3.0;
107}
108
109///////////////////////////////////////////////////////////////////
110// Sympson integral of TR spectral-angle density over energy between
111// the limits varAngle1 and varAngle2 at fixed energy
113 G4double varAngle1,
114 G4double varAngle2) const
115{
116 G4int i;
117 G4double h, sumEven = 0.0, sumOdd = 0.0;
118 h = 0.5 * (varAngle2 - varAngle1) / fSympsonNumber;
119 for(i = 1; i < fSympsonNumber; ++i)
120 {
121 sumEven += SpectralAngleTRdensity(energy, varAngle1 + 2 * i * h);
122 sumOdd += SpectralAngleTRdensity(energy, varAngle1 + (2 * i - 1) * h);
123 }
124 sumOdd +=
125 SpectralAngleTRdensity(energy, varAngle1 + (2 * fSympsonNumber - 1) * h);
126
127 return h *
128 (SpectralAngleTRdensity(energy, varAngle1) +
129 SpectralAngleTRdensity(energy, varAngle2) + 4.0 * sumOdd +
130 2.0 * sumEven) /
131 3.0;
132}
133
134///////////////////////////////////////////////////////////////////
135// The number of transition radiation photons generated in the
136// angle interval between varAngle1 and varAngle2
138 G4double varAngle1, G4double varAngle2) const
139{
140 G4int i;
141 G4double h, sumEven = 0.0, sumOdd = 0.0;
142 h = 0.5 * (varAngle2 - varAngle1) / fSympsonNumber;
143 for(i = 1; i < fSympsonNumber; ++i)
144 {
146 fMinEnergy + 0.3 * (fMaxEnergy - fMinEnergy),
147 varAngle1 + 2 * i * h) +
149 fMaxEnergy, varAngle1 + 2 * i * h);
151 fMinEnergy + 0.3 * (fMaxEnergy - fMinEnergy),
152 varAngle1 + (2 * i - 1) * h) +
154 fMaxEnergy, varAngle1 + (2 * i - 1) * h);
155 }
156 sumOdd +=
158 varAngle1 + (2 * fSympsonNumber - 1) * h) +
160 varAngle1 + (2 * fSympsonNumber - 1) * h);
161
162 return h *
164 fMinEnergy + 0.3 * (fMaxEnergy - fMinEnergy),
165 varAngle1) +
167 fMaxEnergy, varAngle1) +
169 fMinEnergy + 0.3 * (fMaxEnergy - fMinEnergy),
170 varAngle2) +
172 fMaxEnergy, varAngle2) +
173 4.0 * sumOdd + 2.0 * sumEven) /
174 3.0;
175}
176
177///////////////////////////////////////////////////////////////////
178// The number of transition radiation photons, generated in the
179// energy interval between energy1 and energy2
181 G4double energy1, G4double energy2) const
182{
183 G4int i;
184 G4double h, sumEven = 0.0, sumOdd = 0.0;
185 h = 0.5 * (energy2 - energy1) / fSympsonNumber;
186 for(i = 1; i < fSympsonNumber; ++i)
187 {
188 sumEven +=
189 IntegralOverAngle(energy1 + 2 * i * h, 0.0, 0.01 * fMaxTheta) +
190 IntegralOverAngle(energy1 + 2 * i * h, 0.01 * fMaxTheta, fMaxTheta);
191 sumOdd +=
192 IntegralOverAngle(energy1 + (2 * i - 1) * h, 0.0, 0.01 * fMaxTheta) +
193 IntegralOverAngle(energy1 + (2 * i - 1) * h, 0.01 * fMaxTheta, fMaxTheta);
194 }
195 sumOdd += IntegralOverAngle(energy1 + (2 * fSympsonNumber - 1) * h, 0.0,
196 0.01 * fMaxTheta) +
197 IntegralOverAngle(energy1 + (2 * fSympsonNumber - 1) * h,
198 0.01 * fMaxTheta, fMaxTheta);
199
200 return h *
201 (IntegralOverAngle(energy1, 0.0, 0.01 * fMaxTheta) +
202 IntegralOverAngle(energy1, 0.01 * fMaxTheta, fMaxTheta) +
203 IntegralOverAngle(energy2, 0.0, 0.01 * fMaxTheta) +
204 IntegralOverAngle(energy2, 0.01 * fMaxTheta, fMaxTheta) +
205 4.0 * sumOdd + 2.0 * sumEven) /
206 3.0;
207}
@ fTransitionRadiation
G4double condition(const G4ErrorSymMatrix &m)
G4ForceCondition
@ Forced
G4ProcessType
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
G4double GetPDGCharge() const
Definition: G4Step.hh:62
static constexpr G4int fSympsonNumber
G4double EnergyIntegralDistribution(G4double energy1, G4double energy2) const
G4double IntegralOverAngle(G4double energy, G4double varAngle1, G4double varAngle2) const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &) override
G4TransitionRadiation(const G4String &processName="TR", G4ProcessType type=fElectromagnetic)
virtual ~G4TransitionRadiation()
virtual G4double SpectralAngleTRdensity(G4double energy, G4double varAngle) const =0
G4bool IsApplicable(const G4ParticleDefinition &aParticleType) override
virtual void ProcessDescription(std::ostream &) const override
G4double IntegralOverEnergy(G4double energy1, G4double energy2, G4double varAngle) const
G4double AngleIntegralDistribution(G4double varAngle1, G4double varAngle2) const
virtual G4double GetMeanFreePath(const G4Track &, G4double, G4ForceCondition *condition) override
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:331
void ClearNumberOfInteractionLengthLeft()
Definition: G4VProcess.hh:428
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:410
#define DBL_MAX
Definition: templates.hh:62