Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4AnalyticalPolSolver.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4AnalyticalPolSolver
27//
28// Class description:
29//
30// G4AnalyticalPolSolver allows the user to solve analytically a polynomial
31// equation up to the 4th order. This is used by CSG solid tracking functions
32// like G4Torus.
33//
34// The algorithm has been adapted from the CACM Algorithm 326:
35//
36// Roots of low order polynomials
37// Author: Terence R.F.Nonweiler
38// CACM (Apr 1968) p269
39// Translated into C and programmed by M.Dow
40// ANUSF, Australian National University, Canberra, Australia
42//
43// Suite of procedures for finding the (complex) roots of the quadratic,
44// cubic or quartic polynomials by explicit algebraic methods.
45// Each Returns:
46//
47// x=r[1][k] + i r[2][k] k=1,...,n, where n={2,3,4}
48//
49// as roots of:
50// sum_{k=0:n} p[k] x^(n-k) = 0
51// Assumes p[0] != 0. (< or > 0) (overflows otherwise)
52
53// Author: V.Grichine, 13.05.2005
54// --------------------------------------------------------------------
55#ifndef G4AN_POL_SOLVER_HH
56#define G4AN_POL_SOLVER_HH 1
57
58#include "G4Types.hh"
59
61{
62 public:
65
66 G4int QuadRoots(G4double p[5], G4double r[3][5]);
67 G4int CubicRoots(G4double p[5], G4double r[3][5]);
68 G4int BiquadRoots(G4double p[5], G4double r[3][5]);
69 G4int QuarticRoots(G4double p[5], G4double r[3][5]);
70};
71
72#endif
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4int CubicRoots(G4double p[5], G4double r[3][5])
G4int QuarticRoots(G4double p[5], G4double r[3][5])
G4int QuadRoots(G4double p[5], G4double r[3][5])
G4int BiquadRoots(G4double p[5], G4double r[3][5])