Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4LENDElastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26
27#include "G4LENDElastic.hh"
28#include "G4Pow.hh"
30#include "G4SystemOfUnits.hh"
31#include "G4Nucleus.hh"
32#include "G4IonTable.hh"
33
34//extern "C" double MyRNG(void*) { return drand48(); }
35//extern "C" double MyRNG(void*) { return CLHEP::HepRandom::getTheEngine()->flat(); }
36
38{
39
40 G4double temp = aTrack.GetMaterial()->GetTemperature();
41
42 //G4int iZ = int ( aTarg.GetZ() );
43 //G4int iA = int ( aTarg.GetN() );
44 //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this)
45 G4int iZ = aTarg.GetZ_asInt();
46 G4int iA = aTarg.GetA_asInt();
47 G4int iM = 0;
48 if ( aTarg.GetIsotope() != NULL ) {
49 iM = aTarg.GetIsotope()->Getm();
50 }
51
52 G4double ke = aTrack.GetKineticEnergy();
53
55 theResult->Clear();
56
58 if ( aTarget == NULL ) return returnUnchanged( aTrack , theResult );
59
60 G4double aMu = aTarget->getElasticFinalState( ke*MeV, temp, MyRNG , NULL );
61
62 G4double phi = twopi*G4UniformRand();
63 G4double theta = std::acos( aMu );
64 //G4double sinth = std::sin( theta );
65
66 G4ReactionProduct theNeutron( aTrack.GetDefinition() );
67 theNeutron.SetMomentum( aTrack.Get4Momentum().vect() );
68 theNeutron.SetKineticEnergy( ke );
69
70 //G4ParticleDefinition* pd = G4IonTable::GetIonTable()->GetIon( iZ , iA , iM );
71 //TK 170509 Fix for the case of excited isomer target
72 G4double EE = 0.0;
73 if ( iM != 0 ) {
75 }
76 G4ParticleDefinition* target_pd = G4IonTable::GetIonTable()->GetIon( iZ , iA , EE );
77 G4ReactionProduct theTarget( target_pd );
78
79 G4double mass = target_pd->GetPDGMass();
80
81// add Thermal motion
82 G4double kT = k_Boltzmann*temp;
83 G4ThreeVector v ( G4RandGauss::shoot() * std::sqrt( kT*mass )
84 , G4RandGauss::shoot() * std::sqrt( kT*mass )
85 , G4RandGauss::shoot() * std::sqrt( kT*mass ) );
86 theTarget.SetMomentum( v );
87
88 G4ThreeVector the3Neutron = theNeutron.GetMomentum();
89 G4double nEnergy = theNeutron.GetTotalEnergy();
90 G4ThreeVector the3Target = theTarget.GetMomentum();
91 G4double tEnergy = theTarget.GetTotalEnergy();
92 G4ReactionProduct theCMS;
93 G4double totE = nEnergy+tEnergy;
94 G4ThreeVector the3CMS = the3Target+the3Neutron;
95 theCMS.SetMomentum(the3CMS);
96 G4double cmsMom = std::sqrt(the3CMS*the3CMS);
97 G4double sqrts = std::sqrt((totE-cmsMom)*(totE+cmsMom));
98 theCMS.SetMass(sqrts);
99 theCMS.SetTotalEnergy(totE);
100
101 theNeutron.Lorentz(theNeutron, theCMS);
102 theTarget.Lorentz(theTarget, theCMS);
103 G4double en = theNeutron.GetTotalMomentum(); // already in CMS.
104 G4ThreeVector cms3Mom=theNeutron.GetMomentum(); // for neutron direction in CMS
105 G4double cms_theta=cms3Mom.theta();
106 G4double cms_phi=cms3Mom.phi();
107 G4ThreeVector tempVector;
108 tempVector.setX( std::cos(theta)*std::sin(cms_theta)*std::cos(cms_phi)
109 +std::sin(theta)*std::cos(phi)*std::cos(cms_theta)*std::cos(cms_phi)
110 -std::sin(theta)*std::sin(phi)*std::sin(cms_phi) );
111 tempVector.setY( std::cos(theta)*std::sin(cms_theta)*std::sin(cms_phi)
112 +std::sin(theta)*std::cos(phi)*std::cos(cms_theta)*std::sin(cms_phi)
113 +std::sin(theta)*std::sin(phi)*std::cos(cms_phi) );
114 tempVector.setZ( std::cos(theta)*std::cos(cms_theta)
115 -std::sin(theta)*std::cos(phi)*std::sin(cms_theta) );
116 tempVector *= en;
117 theNeutron.SetMomentum(tempVector);
118 theTarget.SetMomentum(-tempVector);
119 G4double tP = theTarget.GetTotalMomentum();
120 G4double tM = theTarget.GetMass();
121 theTarget.SetTotalEnergy(std::sqrt((tP+tM)*(tP+tM)-2.*tP*tM));
122
123
124 theNeutron.Lorentz(theNeutron, -1.*theCMS);
125 theTarget.Lorentz(theTarget, -1.*theCMS);
126
127//110913 Add Protection for very low energy (1e-6eV) scattering
128 if ( theNeutron.GetKineticEnergy() <= 0 )
129 {
130 theNeutron.SetTotalEnergy ( theNeutron.GetMass() * ( 1 + G4Pow::GetInstance()->powA( 10 , -15.65 ) ) );
131 }
132
133 if ( theTarget.GetKineticEnergy() < 0 )
134 {
135 theTarget.SetTotalEnergy ( theTarget.GetMass() * ( 1 + G4Pow::GetInstance()->powA( 10 , -15.65 ) ) );
136 }
137//110913 END
138
139 theResult->SetEnergyChange(theNeutron.GetKineticEnergy());
140 theResult->SetMomentumChange(theNeutron.GetMomentum().unit());
141 G4DynamicParticle* theRecoil = new G4DynamicParticle;
142
143 theRecoil->SetDefinition( target_pd );
144 theRecoil->SetMomentum( theTarget.GetMomentum() );
145 theResult->AddSecondary( theRecoil, secID );
146
147 return theResult;
148
149}
150
double MyRNG(void *)
Definition: G4LENDModel.cc:46
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
double phi() const
double theta() const
void setY(double)
void setZ(double)
void setX(double)
Hep3Vector vect() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
double getElasticFinalState(double e_in, double temperature, double(*rng)(void *), void *rngState)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:522
static G4IonTable * GetIonTable()
Definition: G4IonTable.cc:170
G4int Getm() const
Definition: G4Isotope.hh:99
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
G4double GetExcitationEnergyOfExcitedIsomer(G4int, G4int, G4int)
G4int GetNucleusEncoding(G4int iZ, G4int iA, G4int iM)
static G4LENDManager * GetInstance()
G4LENDManager * lend_manager
Definition: G4LENDModel.hh:84
G4HadFinalState * returnUnchanged(const G4HadProjectile &aTrack, G4HadFinalState *theResult)
Definition: G4LENDModel.cc:255
G4GIDI_target * get_target_from_map(G4int nuclear_code)
Definition: G4LENDModel.cc:269
G4double GetTemperature() const
Definition: G4Material.hh:177
G4int GetA_asInt() const
Definition: G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:105
const G4Isotope * GetIsotope()
Definition: G4Nucleus.hh:111
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:230
void SetMomentum(const G4double x, const G4double y, const G4double z)
void SetTotalEnergy(const G4double en)
G4double GetTotalMomentum() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4ThreeVector GetMomentum() const
void Lorentz(const G4ReactionProduct &p1, const G4ReactionProduct &p2)
void SetKineticEnergy(const G4double en)
G4double GetMass() const
void SetMass(const G4double mas)