Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4Integrator.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4Integrator
27//
28// Class description:
29//
30// Template class collecting integrator methods for generic funtions.
31
32// Author: V.Grichine, 04.09.1999 - First implementation based on
33// G4SimpleIntegration class with H.P.Wellisch, G.Cosmo, and
34// E.TCherniaev advises
35// --------------------------------------------------------------------
36#ifndef G4INTEGRATOR_HH
37#define G4INTEGRATOR_HH 1
38
39#include "G4Types.hh"
41#include <cmath>
42
43template <class T, class F>
45{
46 public:
49
50 G4double Simpson(T& typeT, F f, G4double a, G4double b, G4int n);
51 G4double Simpson(T* ptrT, F f, G4double a, G4double b, G4int n);
53 // Simpson integration method
54
58 G4double e);
59 // Adaptive Gauss method
60
61 // Integration methods involving orthogohol polynomials
62
63 G4double Legendre(T& typeT, F f, G4double a, G4double b, G4int n);
64 G4double Legendre(T* ptrT, F f, G4double a, G4double b, G4int n);
66 //
67 // Methods involving Legendre polynomials
68
69 G4double Legendre10(T& typeT, F f, G4double a, G4double b);
70 G4double Legendre10(T* ptrT, F f, G4double a, G4double b);
72 //
73 // Legendre10 is very fast and accurate enough
74
75 G4double Legendre96(T& typeT, F f, G4double a, G4double b);
76 G4double Legendre96(T* ptrT, F f, G4double a, G4double b);
78 //
79 // Legendre96 is very accurate and fast enough
80
81 G4double Chebyshev(T& typeT, F f, G4double a, G4double b, G4int n);
82 G4double Chebyshev(T* ptrT, F f, G4double a, G4double b, G4int n);
84 //
85 // Methods involving Chebyshev polynomials
86
87 G4double Laguerre(T& typeT, F f, G4double alpha, G4int n);
88 G4double Laguerre(T* ptrT, F f, G4double alpha, G4int n);
90 //
91 // Method involving Laguerre polynomials
92
93 G4double Hermite(T& typeT, F f, G4int n);
94 G4double Hermite(T* ptrT, F f, G4int n);
96 //
97 // Method involving Hermite polynomials
98
99 G4double Jacobi(T& typeT, F f, G4double alpha, G4double beta, G4int n);
100 G4double Jacobi(T* ptrT, F f, G4double alpha, G4double beta, G4int n);
102 G4int n);
103 // Method involving Jacobi polynomials
104
105 protected:
106 // Auxiliary functions for adaptive Gauss method
107
108 G4double Gauss(T& typeT, F f, G4double a, G4double b);
109 G4double Gauss(T* ptrT, F f, G4double a, G4double b);
111
112 void AdaptGauss(T& typeT, F f, G4double a, G4double b, G4double e,
113 G4double& sum, G4int& n);
114 void AdaptGauss(T* typeT, F f, G4double a, G4double b, G4double e,
115 G4double& sum, G4int& n);
117 G4double& sum, G4int& n);
118
120};
121
122#include "G4Integrator.icc"
123
124#endif
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4double Gauss(T &typeT, F f, G4double a, G4double b)
G4double Jacobi(G4double(*f)(G4double), G4double alpha, G4double beta, G4int n)
G4double Simpson(T *ptrT, F f, G4double a, G4double b, G4int n)
G4double Legendre96(T &typeT, F f, G4double a, G4double b)
G4double AdaptiveGauss(T *ptrT, F f, G4double a, G4double b, G4double e)
void AdaptGauss(T &typeT, F f, G4double a, G4double b, G4double e, G4double &sum, G4int &n)
G4double Legendre(G4double(*f)(G4double), G4double a, G4double b, G4int n)
G4double Chebyshev(G4double(*f)(G4double), G4double a, G4double b, G4int n)
G4double Hermite(T *ptrT, F f, G4int n)
G4double Laguerre(G4double(*f)(G4double), G4double alpha, G4int n)
G4double Jacobi(T *ptrT, F f, G4double alpha, G4double beta, G4int n)
G4double Jacobi(T &typeT, F f, G4double alpha, G4double beta, G4int n)
G4double Simpson(T &typeT, F f, G4double a, G4double b, G4int n)
G4double Laguerre(T &typeT, F f, G4double alpha, G4int n)
G4double Legendre10(T &typeT, F f, G4double a, G4double b)
void AdaptGauss(G4double(*f)(G4double), G4double a, G4double b, G4double e, G4double &sum, G4int &n)
G4double Legendre96(G4double(*f)(G4double), G4double a, G4double b)
G4double Legendre96(T *ptrT, F f, G4double a, G4double b)
G4double Chebyshev(T &typeT, F f, G4double a, G4double b, G4int n)
G4double Gauss(T *ptrT, F f, G4double a, G4double b)
G4double Hermite(G4double(*f)(G4double), G4int n)
G4double Gauss(G4double(*f)(G4double), G4double a, G4double b)
G4double Legendre10(T *ptrT, F f, G4double a, G4double b)
G4double Simpson(G4double(*f)(G4double), G4double a, G4double b, G4int n)
G4double AdaptiveGauss(T &typeT, F f, G4double a, G4double b, G4double e)
G4double GammaLogarithm(G4double xx)
G4double Chebyshev(T *ptrT, F f, G4double a, G4double b, G4int n)
G4double AdaptiveGauss(G4double(*f)(G4double), G4double a, G4double b, G4double e)
G4double Legendre10(G4double(*f)(G4double), G4double a, G4double b)
G4double Legendre(T *ptrT, F f, G4double a, G4double b, G4int n)
G4double Legendre(T &typeT, F f, G4double a, G4double b, G4int n)
G4double Hermite(T &typeT, F f, G4int n)
G4double Laguerre(T *ptrT, F f, G4double alpha, G4int n)
void AdaptGauss(T *typeT, F f, G4double a, G4double b, G4double e, G4double &sum, G4int &n)