Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4ParticleHPMadlandNixSpectrum.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// neutron_hp -- source file
27// J.P. Wellisch, Nov-1996
28// A prototype of the low energy neutron transport model.
29// P. Arce, June-2014 Conversion neutron_hp to particle_hp
30//
32#include "G4SystemOfUnits.hh"
33
34 G4double G4ParticleHPMadlandNixSpectrum::Madland(G4double aSecEnergy, G4double tm)
35 {
37 G4double result;
38 G4double energy = aSecEnergy/eV;
39 G4double EF;
40
41 EF = theAvarageKineticPerNucleonForLightFragments/eV;
42 G4double lightU1 = std::sqrt(energy)-std::sqrt(EF);
43 lightU1 *= lightU1/tm;
44 G4double lightU2 = std::sqrt(energy)+std::sqrt(EF);
45 lightU2 *= lightU2/tm;
46 G4double lightTerm=0;
47 if(theAvarageKineticPerNucleonForLightFragments>1*eV)
48 {
49 lightTerm = Pow->powA(lightU2, 1.5)*E1(lightU2);
50 lightTerm -= Pow->powA(lightU1, 1.5)*E1(lightU1);
51 lightTerm += Gamma15(lightU2)-Gamma15(lightU1);
52 lightTerm /= 3.*std::sqrt(tm*EF);
53 }
54
55 EF = theAvarageKineticPerNucleonForHeavyFragments/eV;
56 G4double heavyU1 = std::sqrt(energy)-std::sqrt(EF);
57 heavyU1 *= heavyU1/tm;
58 G4double heavyU2 = std::sqrt(energy)+std::sqrt(EF);
59 heavyU2 *= heavyU2/tm;
60 G4double heavyTerm=0 ;
61 if(theAvarageKineticPerNucleonForHeavyFragments> 1*eV)
62 {
63 heavyTerm = Pow->powA(heavyU2, 1.5)*E1(heavyU2);
64 heavyTerm -= Pow->powA(heavyU1, 1.5)*E1(heavyU1);
65 heavyTerm += Gamma15(heavyU2)-Gamma15(heavyU1);
66 heavyTerm /= 3.*std::sqrt(tm*EF);
67 }
68
69 result = 0.5*(lightTerm+heavyTerm);
70
71 return result;
72 }
73
75 {
76 G4double tm = theMaxTemp.GetY(anEnergy);
77 G4double last=0, buff, current = 100*MeV;
78 G4double precision = 0.001;
79 G4double newValue = 0., oldValue=0.;
80 G4double random = G4UniformRand();
81
82 G4int icounter=0;
83 G4int icounter_max=1024;
84 do
85 {
86 icounter++;
87 if ( icounter > icounter_max ) {
88 G4cout << "Loop-counter exceeded the threshold value at " << __LINE__ << "th line of " << __FILE__ << "." << G4endl;
89 break;
90 }
91 oldValue = newValue;
92 newValue = FissionIntegral(tm, current);
93 if(newValue < random)
94 {
95 buff = current;
96 current+=std::abs(current-last)/2.;
97 last = buff;
98 if(current>190*MeV) throw G4HadronicException(__FILE__, __LINE__, "Madland-Nix Spectrum has not converged in sampling");
99 }
100 else
101 {
102 buff = current;
103 current-=std::abs(current-last)/2.;
104 last = buff;
105 }
106 }
107 while (std::abs(oldValue-newValue)>precision*newValue); // Loop checking, 11.05.2015, T. Koi
108 return current;
109 }
110
111 G4double G4ParticleHPMadlandNixSpectrum::
112 GIntegral(G4double tm, G4double anEnergy, G4double aMean)
113 {
115 if(aMean<1*eV) return 0;
116 G4double b = anEnergy/eV;
117 G4double sb = std::sqrt(b);
118 G4double EF = aMean/eV;
119
120 G4double alpha = std::sqrt(tm);
121 G4double beta = std::sqrt(EF);
122 G4double A = EF/tm;
123 G4double B = (sb+beta)*(sb+beta)/tm;
124 G4double Ap = A;
125 G4double Bp = (sb-beta)*(sb-beta)/tm;
126
127 G4double result;
128 G4double alpha2 = alpha*alpha;
129 G4double alphabeta = alpha*beta;
130 if(b<EF)
131 {
132 result =
133 (
134 (0.4*alpha2*Pow->powA(B,2.5) - 0.5*alphabeta*B*B)*E1(B) -
135 (0.4*alpha2*Pow->powA(A,2.5) - 0.5*alphabeta*A*A)*E1(A)
136 )
137 -
138 (
139 (0.4*alpha2*Pow->powA(Bp,2.5) + 0.5*alphabeta*Bp*Bp)*E1(Bp) -
140 (0.4*alpha2*Pow->powA(Ap,2.5) + 0.5*alphabeta*Ap*Ap)*E1(Ap)
141 )
142 +
143 (
144 (alpha2*B-2*alphabeta*std::sqrt(B))*Gamma15(B) -
145 (alpha2*A-2*alphabeta*std::sqrt(A))*Gamma15(A)
146 )
147 -
148 (
149 (alpha2*Bp-2*alphabeta*std::sqrt(Bp))*Gamma15(Bp) -
150 (alpha2*Ap-2*alphabeta*std::sqrt(Ap))*Gamma15(Ap)
151 )
152 - 0.6*alpha2*(Gamma25(B) - Gamma25(A) - Gamma25(Bp) + Gamma25(Ap))
153 - 1.5*alphabeta*(G4Exp(-B)*(1+B) - G4Exp(-A)*(1+A) + G4Exp(-Bp)*(1+Bp) + G4Exp(-Ap)*(1+Ap)) ;
154 }
155 else
156 {
157 result =
158 (
159 (0.4*alpha2*Pow->powA(B,2.5) - 0.5*alphabeta*B*B)*E1(B) -
160 (0.4*alpha2*Pow->powA(A,2.5) - 0.5*alphabeta*A*A)*E1(A)
161 );
162 result -=
163 (
164 (0.4*alpha2*Pow->powA(Bp,2.5) + 0.5*alphabeta*Bp*Bp)*E1(Bp) -
165 (0.4*alpha2*Pow->powA(Ap,2.5) + 0.5*alphabeta*Ap*Ap)*E1(Ap)
166 );
167 result +=
168 (
169 (alpha2*B-2*alphabeta*std::sqrt(B))*Gamma15(B) -
170 (alpha2*A-2*alphabeta*std::sqrt(A))*Gamma15(A)
171 );
172 result -=
173 (
174 (alpha2*Bp+2*alphabeta*std::sqrt(Bp))*Gamma15(Bp) -
175 (alpha2*Ap+2*alphabeta*std::sqrt(Ap))*Gamma15(Ap)
176 );
177 result -= 0.6*alpha2*(Gamma25(B) - Gamma25(A) - Gamma25(Bp) + Gamma25(Ap));
178 result -= 1.5*alphabeta*(G4Exp(-B)*(1+B) - G4Exp(-A)*(1+A) + G4Exp(-Bp)*(1+Bp) + G4Exp(-Ap)*(1+Ap) - 2.) ;
179 }
180 result = result / (3.*std::sqrt(tm*EF));
181 return result;
182 }
G4double B(G4double temperature)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4double A[17]
const G4double alpha2
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
G4double GetY(G4double x)
Definition: G4Pow.hh:49
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:230
G4double energy(const ThreeVector &p, const G4double m)