Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLCrossSections.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
41#include "G4INCLLogger.hh"
47// #include <cassert>
48
49namespace G4INCL {
50
51 namespace {
52 G4ThreadLocal ICrossSections *theCrossSections;
53 }
54
55 namespace CrossSections {
56 G4double elastic(Particle const * const p1, Particle const * const p2) {
57 return theCrossSections->elastic(p1,p2);
58 }
59
60 G4double total(Particle const * const p1, Particle const * const p2) {
61 return theCrossSections->total(p1,p2);
62 }
63
64 G4double NDeltaToNN(Particle const * const p1, Particle const * const p2) {
65 return theCrossSections->NDeltaToNN(p1,p2);
66 }
67
68 G4double NNToNDelta(Particle const * const p1, Particle const * const p2) {
69 return theCrossSections->NNToNDelta(p1,p2);
70 }
71
72 G4double NNToxPiNN(const G4int xpi, Particle const * const p1, Particle const * const p2) {
73 return theCrossSections->NNToxPiNN(xpi,p1,p2);
74 }
75
76 G4double piNToDelta(Particle const * const p1, Particle const * const p2) {
77 return theCrossSections->piNToDelta(p1,p2);
78 }
79
80 G4double piNToxPiN(const G4int xpi, Particle const * const p1, Particle const * const p2) {
81 return theCrossSections->piNToxPiN(xpi,p1,p2);
82 }
83
84 G4double piNToEtaN(Particle const * const p1, Particle const * const p2) {
85 return theCrossSections->piNToEtaN(p1,p2);
86 }
87
88 G4double piNToOmegaN(Particle const * const p1, Particle const * const p2) {
89 return theCrossSections->piNToOmegaN(p1,p2);
90 }
91
92 G4double piNToEtaPrimeN(Particle const * const p1, Particle const * const p2) {
93 return theCrossSections->piNToEtaPrimeN(p1,p2);
94 }
95
96 G4double etaNToPiN(Particle const * const p1, Particle const * const p2) {
97 return theCrossSections->etaNToPiN(p1,p2);
98 }
99
100 G4double etaNToPiPiN(Particle const * const p1, Particle const * const p2) {
101 return theCrossSections->etaNToPiPiN(p1,p2);
102 }
103
104 G4double omegaNToPiN(Particle const * const p1, Particle const * const p2) {
105 return theCrossSections->omegaNToPiN(p1,p2);
106 }
107
108 G4double omegaNToPiPiN(Particle const * const p1, Particle const * const p2) {
109 return theCrossSections->omegaNToPiPiN(p1,p2);
110 }
111
112 G4double etaPrimeNToPiN(Particle const * const p1, Particle const * const p2) {
113 return theCrossSections->etaPrimeNToPiN(p1,p2);
114 }
115
116 G4double NNToNNEta(Particle const * const p1, Particle const * const p2) {
117 return theCrossSections->NNToNNEta(p1,p2);
118 }
119
120 G4double NNToNNEtaExclu(Particle const * const p1, Particle const * const p2) {
121 return theCrossSections->NNToNNEtaExclu(p1,p2);
122 }
123
124 G4double NNToNNEtaxPi(const G4int xpi, Particle const * const p1, Particle const * const p2) {
125 return theCrossSections->NNToNNEtaxPi(xpi,p1,p2);
126 }
127
128 G4double NNToNDeltaEta(Particle const * const p1, Particle const * const p2) {
129 return theCrossSections->NNToNDeltaEta(p1,p2);
130 }
131
132
133 G4double NNToNNOmega(Particle const * const p1, Particle const * const p2) {
134 return theCrossSections->NNToNNOmega(p1,p2);
135 }
136
137 G4double NNToNNOmegaExclu(Particle const * const p1, Particle const * const p2) {
138 return theCrossSections->NNToNNOmegaExclu(p1,p2);
139 }
140
141 G4double NNToNNOmegaxPi(const G4int xpi, Particle const * const p1, Particle const * const p2) {
142 return theCrossSections->NNToNNOmegaxPi(xpi,p1,p2);
143 }
144
145 G4double NNToNDeltaOmega(Particle const * const p1, Particle const * const p2) {
146 return theCrossSections->NNToNDeltaOmega(p1,p2);
147 }
148
149
150 G4double NYelastic(Particle const * const p1, Particle const * const p2) {
151 return theCrossSections->NYelastic(p1,p2);
152 }
153
154 G4double NKbelastic(Particle const * const p1, Particle const * const p2) {
155 return theCrossSections->NKbelastic(p1,p2);
156 }
157
158 G4double NKelastic(Particle const * const p1, Particle const * const p2) {
159 return theCrossSections->NKelastic(p1,p2);
160 }
161
162 G4double NNToNLK(Particle const * const p1, Particle const * const p2) {
163 return theCrossSections->NNToNLK(p1,p2);
164 }
165
166 G4double NNToNSK(Particle const * const p1, Particle const * const p2) {
167 return theCrossSections->NNToNSK(p1,p2);
168 }
169
170 G4double NNToNLKpi(Particle const * const p1, Particle const * const p2) {
171 return theCrossSections->NNToNLKpi(p1,p2);
172 }
173
174 G4double NNToNSKpi(Particle const * const p1, Particle const * const p2) {
175 return theCrossSections->NNToNSKpi(p1,p2);
176 }
177
178 G4double NNToNLK2pi(Particle const * const p1, Particle const * const p2) {
179 return theCrossSections->NNToNLK2pi(p1,p2);
180 }
181
182 G4double NNToNSK2pi(Particle const * const p1, Particle const * const p2) {
183 return theCrossSections->NNToNSK2pi(p1,p2);
184 }
185
186 G4double NNToNNKKb(Particle const * const p1, Particle const * const p2) {
187 return theCrossSections->NNToNNKKb(p1,p2);
188 }
189
190 G4double NNToMissingStrangeness(Particle const * const p1, Particle const * const p2) {
191 return theCrossSections->NNToMissingStrangeness(p1,p2);
192 }
193
194 G4double NDeltaToNLK(Particle const * const p1, Particle const * const p2) {
195 return theCrossSections->NDeltaToNLK(p1,p2);
196 }
197 G4double NDeltaToNSK(Particle const * const p1, Particle const * const p2) {
198 return theCrossSections->NDeltaToNSK(p1,p2);
199 }
200 G4double NDeltaToDeltaLK(Particle const * const p1, Particle const * const p2) {
201 return theCrossSections->NDeltaToDeltaLK(p1,p2);
202 }
203 G4double NDeltaToDeltaSK(Particle const * const p1, Particle const * const p2) {
204 return theCrossSections->NDeltaToDeltaSK(p1,p2);
205 }
206
207 G4double NDeltaToNNKKb(Particle const * const p1, Particle const * const p2) {
208 return theCrossSections->NDeltaToNNKKb(p1,p2);
209 }
210
211 G4double NpiToLK(Particle const * const p1, Particle const * const p2) {
212 return theCrossSections->NpiToLK(p1,p2);
213 }
214
215 G4double NpiToSK(Particle const * const p1, Particle const * const p2) {
216 return theCrossSections->NpiToSK(p1,p2);
217 }
218
219 G4double p_pimToSmKp(Particle const * const p1, Particle const * const p2) {
220 return theCrossSections->p_pimToSmKp(p1,p2);
221 }
222
223 G4double p_pimToSzKz(Particle const * const p1, Particle const * const p2) {
224 return theCrossSections->p_pimToSzKz(p1,p2);
225 }
226
227 G4double p_pizToSzKp(Particle const * const p1, Particle const * const p2) {
228 return theCrossSections->p_pizToSzKp(p1,p2);
229 }
230
231 G4double NpiToLKpi(Particle const * const p1, Particle const * const p2) {
232 return theCrossSections->NpiToLKpi(p1,p2);
233 }
234
235 G4double NpiToSKpi(Particle const * const p1, Particle const * const p2) {
236 return theCrossSections->NpiToSKpi(p1,p2);
237 }
238
239 G4double NpiToLK2pi(Particle const * const p1, Particle const * const p2) {
240 return theCrossSections->NpiToLK2pi(p1,p2);
241 }
242
243 G4double NpiToSK2pi(Particle const * const p1, Particle const * const p2) {
244 return theCrossSections->NpiToSK2pi(p1,p2);
245 }
246
247 G4double NpiToNKKb(Particle const * const p1, Particle const * const p2) {
248 return theCrossSections->NpiToNKKb(p1,p2);
249 }
250
251 G4double NpiToMissingStrangeness(Particle const * const p1, Particle const * const p2) {
252 return theCrossSections->NpiToMissingStrangeness(p1,p2);
253 }
254
255 G4double NLToNS(Particle const * const p1, Particle const * const p2) {
256 return theCrossSections->NLToNS(p1,p2);
257 }
258
259 G4double NSToNL(Particle const * const p1, Particle const * const p2) {
260 return theCrossSections->NSToNL(p1,p2);
261 }
262
263 G4double NSToNS(Particle const * const p1, Particle const * const p2) {
264 return theCrossSections->NSToNS(p1,p2);
265 }
266
267 G4double NKToNK(Particle const * const p1, Particle const * const p2) {
268 return theCrossSections->NKToNK(p1,p2);
269 }
270
271 G4double NKToNKpi(Particle const * const p1, Particle const * const p2) {
272 return theCrossSections->NKToNKpi(p1,p2);
273 }
274
275 G4double NKToNK2pi(Particle const * const p1, Particle const * const p2) {
276 return theCrossSections->NKToNK2pi(p1,p2);
277 }
278
279 G4double NKbToNKb(Particle const * const p1, Particle const * const p2) {
280 return theCrossSections->NKbToNKb(p1,p2);
281 }
282
283 G4double NKbToSpi(Particle const * const p1, Particle const * const p2) {
284 return theCrossSections->NKbToSpi(p1,p2);
285 }
286
287 G4double NKbToLpi(Particle const * const p1, Particle const * const p2) {
288 return theCrossSections->NKbToLpi(p1,p2);
289 }
290
291 G4double NKbToS2pi(Particle const * const p1, Particle const * const p2) {
292 return theCrossSections->NKbToS2pi(p1,p2);
293 }
294
295 G4double NKbToL2pi(Particle const * const p1, Particle const * const p2) {
296 return theCrossSections->NKbToL2pi(p1,p2);
297 }
298
299 G4double NKbToNKbpi(Particle const * const p1, Particle const * const p2) {
300 return theCrossSections->NKbToNKbpi(p1,p2);
301 }
302
303 G4double NKbToNKb2pi(Particle const * const p1, Particle const * const p2) {
304 return theCrossSections->NKbToNKb2pi(p1,p2);
305 }
306
307
309 return theCrossSections->calculateNNAngularSlope(energyCM, iso);
310 }
311
312 G4double interactionDistancePiN(const G4double projectileKineticEnergy) {
313 ThreeVector nullVector;
314 ThreeVector unitVector(0., 0., 1.);
315
316 Particle piPlusProjectile(PiPlus, unitVector, nullVector);
317 piPlusProjectile.setEnergy(piPlusProjectile.getMass()+projectileKineticEnergy);
318 piPlusProjectile.adjustMomentumFromEnergy();
319 Particle piZeroProjectile(PiZero, unitVector, nullVector);
320 piZeroProjectile.setEnergy(piZeroProjectile.getMass()+projectileKineticEnergy);
321 piZeroProjectile.adjustMomentumFromEnergy();
322 Particle piMinusProjectile(PiMinus, unitVector, nullVector);
323 piMinusProjectile.setEnergy(piMinusProjectile.getMass()+projectileKineticEnergy);
324 piMinusProjectile.adjustMomentumFromEnergy();
325
326 Particle protonTarget(Proton, nullVector, nullVector);
327 Particle neutronTarget(Neutron, nullVector, nullVector);
328 const G4double sigmapipp = total(&piPlusProjectile, &protonTarget);
329 const G4double sigmapipn = total(&piPlusProjectile, &neutronTarget);
330 const G4double sigmapi0p = total(&piZeroProjectile, &protonTarget);
331 const G4double sigmapi0n = total(&piZeroProjectile, &neutronTarget);
332 const G4double sigmapimp = total(&piMinusProjectile, &protonTarget);
333 const G4double sigmapimn = total(&piMinusProjectile, &neutronTarget);
334 /* We compute the interaction distance from the largest of the pi-N cross
335 * sections. Note that this is different from INCL4.6, which just takes the
336 * average of the six, and will in general lead to a different geometrical
337 * cross section.
338 */
339 const G4double largestSigma = std::max(sigmapipp, std::max(sigmapipn, std::max(sigmapi0p, std::max(sigmapi0n, std::max(sigmapimp,sigmapimn)))));
340 const G4double interactionDistance = std::sqrt(largestSigma/Math::tenPi);
341
342 return interactionDistance;
343 }
344
345 G4double interactionDistanceNN(const ParticleSpecies &aSpecies, const G4double kineticEnergy) {
346// assert(aSpecies.theType==Proton || aSpecies.theType==Neutron || aSpecies.theType==Composite);
347// assert(aSpecies.theA>0);
348 ThreeVector nullVector;
349 ThreeVector unitVector(0.,0.,1.);
350
351 const G4double kineticEnergyPerNucleon = kineticEnergy / aSpecies.theA;
352
353 Particle protonProjectile(Proton, unitVector, nullVector);
354 protonProjectile.setEnergy(protonProjectile.getMass()+kineticEnergyPerNucleon);
355 protonProjectile.adjustMomentumFromEnergy();
356 Particle neutronProjectile(Neutron, unitVector, nullVector);
357 neutronProjectile.setEnergy(neutronProjectile.getMass()+kineticEnergyPerNucleon);
358 neutronProjectile.adjustMomentumFromEnergy();
359
360 Particle protonTarget(Proton, nullVector, nullVector);
361 Particle neutronTarget(Neutron, nullVector, nullVector);
362 const G4double sigmapp = total(&protonProjectile, &protonTarget);
363 const G4double sigmapn = total(&protonProjectile, &neutronTarget);
364 const G4double sigmann = total(&neutronProjectile, &neutronTarget);
365 /* We compute the interaction distance from the largest of the NN cross
366 * sections. Note that this is different from INCL4.6, which just takes the
367 * average of the four, and will in general lead to a different geometrical
368 * cross section.
369 */
370 const G4double largestSigma = std::max(sigmapp, std::max(sigmapn, sigmann));
371 const G4double interactionDistance = std::sqrt(largestSigma/Math::tenPi);
372
373 return interactionDistance;
374 }
375
377 ThreeVector nullVector;
378 ThreeVector unitVector(0.,0.,1.);
379
380 Particle kpProjectile(KPlus, unitVector, nullVector);
381 kpProjectile.setEnergy(kpProjectile.getMass()+kineticEnergy);
382 kpProjectile.adjustMomentumFromEnergy();
383 Particle kzProjectile(KZero, unitVector, nullVector);
384 kzProjectile.setEnergy(kzProjectile.getMass()+kineticEnergy);
385 kzProjectile.adjustMomentumFromEnergy();
386
387 Particle protonTarget(Proton, nullVector, nullVector);
388 Particle neutronTarget(Neutron, nullVector, nullVector);
389 const G4double sigmakpp = total(&kpProjectile, &protonTarget);
390 const G4double sigmakpn = total(&kpProjectile, &neutronTarget);
391 const G4double sigmakzp = total(&kzProjectile, &protonTarget);
392 const G4double sigmakzn = total(&kzProjectile, &neutronTarget);
393
394 const G4double largestSigma = std::max(sigmakpp, std::max(sigmakpn, std::max(sigmakzp, sigmakzn)));
395 const G4double interactionDistance = std::sqrt(largestSigma/Math::tenPi);
396
397 return interactionDistance;
398 }
399
401 ThreeVector nullVector;
402 ThreeVector unitVector(0.,0.,1.);
403
404 Particle kmProjectile(KMinus, unitVector, nullVector);
405 kmProjectile.setEnergy(kmProjectile.getMass()+kineticEnergy);
406 kmProjectile.adjustMomentumFromEnergy();
407 Particle kzProjectile(KZeroBar, unitVector, nullVector);
408 kzProjectile.setEnergy(kzProjectile.getMass()+kineticEnergy);
409 kzProjectile.adjustMomentumFromEnergy();
410
411 Particle protonTarget(Proton, nullVector, nullVector);
412 Particle neutronTarget(Neutron, nullVector, nullVector);
413 const G4double sigmakmp = total(&kmProjectile, &protonTarget);
414 const G4double sigmakmn = total(&kmProjectile, &neutronTarget);
415 const G4double sigmakzp = total(&kzProjectile, &protonTarget);
416 const G4double sigmakzn = total(&kzProjectile, &neutronTarget);
417
418 const G4double largestSigma = std::max(sigmakmp, std::max(sigmakmn, std::max(sigmakzp, sigmakzn)));
419 const G4double interactionDistance = std::sqrt(largestSigma/Math::tenPi);
420
421 return interactionDistance;
422 }
423
425 ThreeVector nullVector;
426 ThreeVector unitVector(0.,0.,1.);
427
428 Particle lProjectile(Lambda, unitVector, nullVector);
429 lProjectile.setEnergy(lProjectile.getMass()+kineticEnergy);
430 lProjectile.adjustMomentumFromEnergy();
431 Particle spProjectile(SigmaPlus, unitVector, nullVector);
432 spProjectile.setEnergy(spProjectile.getMass()+kineticEnergy);
433 spProjectile.adjustMomentumFromEnergy();
434 Particle szProjectile(SigmaZero, unitVector, nullVector);
435 szProjectile.setEnergy(szProjectile.getMass()+kineticEnergy);
436 szProjectile.adjustMomentumFromEnergy();
437 Particle smProjectile(SigmaMinus, unitVector, nullVector);
438 smProjectile.setEnergy(smProjectile.getMass()+kineticEnergy);
439 smProjectile.adjustMomentumFromEnergy();
440
441 Particle protonTarget(Proton, nullVector, nullVector);
442 Particle neutronTarget(Neutron, nullVector, nullVector);
443 const G4double sigmalp = total(&lProjectile, &protonTarget);
444 const G4double sigmaln = total(&lProjectile, &neutronTarget);
445 const G4double sigmaspp = total(&spProjectile, &protonTarget);
446 const G4double sigmaspn = total(&spProjectile, &neutronTarget);
447 const G4double sigmaszp = total(&szProjectile, &protonTarget);
448 const G4double sigmaszn = total(&szProjectile, &neutronTarget);
449 const G4double sigmasmp = total(&smProjectile, &protonTarget);
450 const G4double sigmasmn = total(&smProjectile, &neutronTarget);
451
452 const G4double largestSigma = std::max(sigmalp, std::max(sigmaln, std::max(sigmaspp, std::max(sigmaspn, std::max(sigmaszp, std::max(sigmaszn, std::max(sigmasmp, sigmasmn)))))));
453 const G4double interactionDistance = std::sqrt(largestSigma/Math::tenPi);
454
455 return interactionDistance;
456 }
457
459 theCrossSections = c;
460 }
461
463 delete theCrossSections;
464 theCrossSections = NULL;
465 }
466
467 void initialize(Config const * const theConfig) {
468 CrossSectionsType crossSections = theConfig->getCrossSectionsType();
469 if(crossSections == INCL46CrossSections)
471 else if(crossSections == MultiPionsCrossSections)
473 else if(crossSections == TruncatedMultiPionsCrossSections) {
474 const G4int nMaxPi = theConfig->getMaxNumberMultipions();
475 if(nMaxPi>0)
477 else {
478 INCL_WARN("Truncated multipion cross sections were requested, but the specified maximum\n"
479 << "number of pions is <=0. Falling back to standard multipion cross-sections.\n");
481 }
482 } else if(crossSections == MultiPionsAndResonancesCrossSections)
484 else if(crossSections == StrangenessCrossSections)
486 }
487 }
488}
Cross sections used in INCL4.6.
Multipion and mesonic Resonances cross sections.
Cross sections used in INCL Multipions.
Multipion, mesonic Resonances and strange cross sections.
Truncated multipion cross sections.
#define INCL_WARN(x)
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4int getMaxNumberMultipions() const
Get the maximum number of pions for multipion collisions.
CrossSectionsType getCrossSectionsType() const
Get the Cross Section type.
Cross sections used in INCL4.6.
Cross sections used in INCL Multipions.
Multipion, mesonic Resonances and strange cross sections.
Abstract interface for the cross-section classes.
const ThreeVector & adjustMomentumFromEnergy()
Rescale the momentum to match the total energy.
void setEnergy(G4double energy)
G4double getMass() const
Get the cached particle mass.
G4double NSToNL(Particle const *const p1, Particle const *const p2)
G4double NNToNNKKb(Particle const *const p1, Particle const *const p2)
G4double elastic(Particle const *const p1, Particle const *const p2)
G4double NpiToSK(Particle const *const p1, Particle const *const p2)
G4double NNToNNOmega(Particle const *const p1, Particle const *const p2)
G4double NNToNNEta(Particle const *const p1, Particle const *const p2)
G4double piNToOmegaN(Particle const *const p1, Particle const *const p2)
G4double NKbToNKb2pi(Particle const *const p1, Particle const *const p2)
G4double interactionDistanceKbarN(const G4double projectileKineticEnergy)
Compute the "interaction distance".
G4double interactionDistancePiN(const G4double projectileKineticEnergy)
Compute the "interaction distance".
G4double NNToNDeltaOmega(Particle const *const p1, Particle const *const p2)
G4double NDeltaToDeltaLK(Particle const *const p1, Particle const *const p2)
G4double NNToNSKpi(Particle const *const p1, Particle const *const p2)
G4double etaNToPiN(Particle const *const p1, Particle const *const p2)
G4double NDeltaToNNKKb(Particle const *const p1, Particle const *const p2)
G4double NKbToLpi(Particle const *const p1, Particle const *const p2)
G4double NNToNLK2pi(Particle const *const p1, Particle const *const p2)
G4double etaNToPiPiN(Particle const *const p1, Particle const *const p2)
G4double NYelastic(Particle const *const p1, Particle const *const p2)
G4double NKbToS2pi(Particle const *const p1, Particle const *const p2)
G4double piNToEtaN(Particle const *const p1, Particle const *const p2)
G4double omegaNToPiN(Particle const *const p1, Particle const *const p2)
G4double NDeltaToNSK(Particle const *const p1, Particle const *const p2)
G4double NKbToSpi(Particle const *const p1, Particle const *const p2)
G4double NNToNDelta(Particle const *const p1, Particle const *const p2)
G4double p_pimToSzKz(Particle const *const p1, Particle const *const p2)
G4double NNToNSK(Particle const *const p1, Particle const *const p2)
G4double NDeltaToNLK(Particle const *const p1, Particle const *const p2)
G4double NLToNS(Particle const *const p1, Particle const *const p2)
G4double piNToDelta(Particle const *const p1, Particle const *const p2)
G4double NKbToNKb(Particle const *const p1, Particle const *const p2)
G4double NNToNSK2pi(Particle const *const p1, Particle const *const p2)
G4double NNToNLK(Particle const *const p1, Particle const *const p2)
Strange cross sections.
G4double NNToNNEtaExclu(Particle const *const p1, Particle const *const p2)
G4double interactionDistanceKN(const G4double projectileKineticEnergy)
Compute the "interaction distance".
G4double NNToNDeltaEta(Particle const *const p1, Particle const *const p2)
G4double NNToNNOmegaxPi(const G4int xpi, Particle const *const p1, Particle const *const p2)
G4double NNToNNEtaxPi(const G4int xpi, Particle const *const p1, Particle const *const p2)
G4double NKelastic(Particle const *const p1, Particle const *const p2)
G4double interactionDistanceYN(const G4double projectileKineticEnergy)
Compute the "interaction distance".
G4double NSToNS(Particle const *const p1, Particle const *const p2)
G4double NpiToNKKb(Particle const *const p1, Particle const *const p2)
G4double NpiToLK2pi(Particle const *const p1, Particle const *const p2)
G4double omegaNToPiPiN(Particle const *const p1, Particle const *const p2)
G4double NDeltaToDeltaSK(Particle const *const p1, Particle const *const p2)
G4double NpiToMissingStrangeness(Particle const *const p1, Particle const *const p2)
G4double total(Particle const *const p1, Particle const *const p2)
void setCrossSections(ICrossSections *c)
G4double NDeltaToNN(Particle const *const p1, Particle const *const p2)
G4double NpiToLKpi(Particle const *const p1, Particle const *const p2)
G4double piNToEtaPrimeN(Particle const *const p1, Particle const *const p2)
G4double NKbelastic(Particle const *const p1, Particle const *const p2)
G4double NKbToNKbpi(Particle const *const p1, Particle const *const p2)
G4double NNToNLKpi(Particle const *const p1, Particle const *const p2)
G4double p_pizToSzKp(Particle const *const p1, Particle const *const p2)
G4double NKbToL2pi(Particle const *const p1, Particle const *const p2)
void initialize(Config const *const theConfig)
G4double etaPrimeNToPiN(Particle const *const p1, Particle const *const p2)
G4double NNToxPiNN(const G4int xpi, Particle const *const p1, Particle const *const p2)
G4double NKToNK2pi(Particle const *const p1, Particle const *const p2)
G4double NKToNKpi(Particle const *const p1, Particle const *const p2)
G4double calculateNNAngularSlope(G4double energyCM, G4int iso)
Calculate the slope of the NN DDXS.
G4double NNToNNOmegaExclu(Particle const *const p1, Particle const *const p2)
G4double interactionDistanceNN(const ParticleSpecies &aSpecies, const G4double kineticEnergy)
Compute the "interaction distance".
G4double NpiToSK2pi(Particle const *const p1, Particle const *const p2)
G4double NKToNK(Particle const *const p1, Particle const *const p2)
G4double NNToMissingStrangeness(Particle const *const p1, Particle const *const p2)
G4double piNToxPiN(const G4int xpi, Particle const *const p1, Particle const *const p2)
G4double NpiToLK(Particle const *const p1, Particle const *const p2)
G4double p_pimToSmKp(Particle const *const p1, Particle const *const p2)
G4double NpiToSKpi(Particle const *const p1, Particle const *const p2)
const G4double tenPi
@ MultiPionsAndResonancesCrossSections
@ MultiPionsCrossSections
@ TruncatedMultiPionsCrossSections
@ StrangenessCrossSections
#define G4ThreadLocal
Definition: tls.hh:77