Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4RegularXTRadiator.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26
28
29#include "G4Gamma.hh"
31
32////////////////////////////////////////////////////////////////////////////
33// Constructor, destructor
35 G4Material* foilMat,
36 G4Material* gasMat, G4double a,
37 G4double b, G4int n,
38 const G4String& processName)
39 : G4VXTRenergyLoss(anEnvelope, foilMat, gasMat, a, b, n, processName)
40{
41 G4cout << "Regular X-ray TR radiator EM process is called" << G4endl;
42
43 // Build energy and angular integral spectra of X-ray TR photons from
44 // a radiator
45
46 fAlphaPlate = 10000;
47 fAlphaGas = 1000;
48 G4cout << "fAlphaPlate = " << fAlphaPlate << " ; fAlphaGas = " << fAlphaGas
49 << G4endl;
50}
51
52///////////////////////////////////////////////////////////////////////////
54
55void G4RegularXTRadiator::ProcessDescription(std::ostream& out) const
56{
57 out << "Simulation of X-ray transition radiation generated by\n"
58 "relativistic charged particles crossing the interface between\n"
59 "two materials. Thicknesses of plates and gaps are fixed.\n";
60}
61
62///////////////////////////////////////////////////////////////////////////
64{
65 G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC, theta2, theta2k;
66 G4double aMa, bMb, sigma, dump;
67 G4int k, kMax, kMin;
68
69 aMa = fPlateThick * GetPlateLinearPhotoAbs(energy);
70 bMb = fGasThick * GetGasLinearPhotoAbs(energy);
71 sigma = 0.5 * (aMa + bMb);
72 dump = std::exp(-fPlateNumber * sigma);
73 if(verboseLevel > 2)
74 G4cout << " dump = " << dump << G4endl;
75 cofPHC = 4 * pi * hbarc;
76 tmp = (fSigma1 - fSigma2) / cofPHC / energy;
77 cof1 = fPlateThick * tmp;
78 cof2 = fGasThick * tmp;
79
80 cofMin = energy * (fPlateThick + fGasThick) / fGamma / fGamma;
81 cofMin += (fPlateThick * fSigma1 + fGasThick * fSigma2) / energy;
82 cofMin /= cofPHC;
83
84 theta2 = cofPHC / (energy * (fPlateThick + fGasThick));
85
86 kMin = G4int(cofMin);
87 if(cofMin > kMin)
88 kMin++;
89
90 kMax = kMin + 49;
91
92 if(verboseLevel > 2)
93 {
94 G4cout << cof1 << " " << cof2 << " " << cofMin << G4endl;
95 G4cout << "kMin = " << kMin << "; kMax = " << kMax << G4endl;
96 }
97 for(k = kMin; k <= kMax; ++k)
98 {
99 tmp = pi * fPlateThick * (k + cof2) / (fPlateThick + fGasThick);
100 result = (k - cof1) * (k - cof1) * (k + cof2) * (k + cof2);
101 if(k == kMin && kMin == G4int(cofMin))
102 {
103 sum +=
104 0.5 * std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result;
105 }
106 else
107 {
108 sum += std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result;
109 }
110 theta2k = std::sqrt(theta2 * std::abs(k - cofMin));
111
112 if(verboseLevel > 2)
113 {
114 G4cout << k << " " << theta2k << " "
115 << std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result
116 << " " << sum << G4endl;
117 }
118 }
119 result = 2 * (cof1 + cof2) * (cof1 + cof2) * sum / energy;
120 result *= (1 - dump + 2 * dump * fPlateNumber);
121
122 return result;
123}
124
125///////////////////////////////////////////////////////////////////////////
126// Approximation for radiator interference factor for the case of
127// fully Regular radiator. The plate and gas gap thicknesses are fixed.
128// The mean values of the plate and gas gap thicknesses
129// are supposed to be about XTR formation zones but much less than
130// mean absorption length of XTR photons in corresponding material.
131
133 G4double varAngle)
134{
135 // some gamma (10000/1000) like algorithm
136
137 G4double result, Za, Zb, Ma, Mb;
138
139 Za = GetPlateFormationZone(energy, gamma, varAngle);
140 Zb = GetGasFormationZone(energy, gamma, varAngle);
141
142 Ma = GetPlateLinearPhotoAbs(energy);
143 Mb = GetGasLinearPhotoAbs(energy);
144
145 G4complex Ca(1.0 + 0.5 * fPlateThick * Ma / fAlphaPlate,
146 fPlateThick / Za / fAlphaPlate);
147 G4complex Cb(1.0 + 0.5 * fGasThick * Mb / fAlphaGas,
148 fGasThick / Zb / fAlphaGas);
149
150 G4complex Ha = std::pow(Ca, -fAlphaPlate);
151 G4complex Hb = std::pow(Cb, -fAlphaGas);
152 G4complex H = Ha * Hb;
153
154 G4complex F1 = (1.0 - Ha) * (1.0 - Hb) / (1.0 - H) * G4double(fPlateNumber);
155
156 G4complex F2 = (1.0 - Ha) * (1.0 - Ha) * Hb / (1.0 - H) / (1.0 - H) *
157 (1.0 - std::pow(H, fPlateNumber));
158
159 G4complex R = (F1 + F2) * OneInterfaceXTRdEdx(energy, gamma, varAngle);
160
161 result = 2.0 * std::real(R);
162
163 return result;
164}
double G4double
Definition: G4Types.hh:83
std::complex< G4double > G4complex
Definition: G4Types.hh:88
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
G4RegularXTRadiator(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRegularRadiator")
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle) override
G4double SpectralXTRdEdx(G4double energy) override
void ProcessDescription(std::ostream &) const override
G4int verboseLevel
Definition: G4VProcess.hh:360
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasFormationZone(G4double, G4double, G4double)
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double GetGasLinearPhotoAbs(G4double)