Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4JTPolynomialSolver.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4JTPolynomialSolver
27//
28// Class description:
29//
30// G4JTPolynomialSolver implements the Jenkins-Traub algorithm
31// for real polynomial root finding.
32// The solver returns -1, if the leading coefficient is zero,
33// the number of roots found, otherwise.
34//
35// ----------------------------- INPUT --------------------------------
36//
37// op - double precision vector of coefficients in order of
38// decreasing powers
39// degree - integer degree of polynomial
40//
41// ----------------------------- OUTPUT -------------------------------
42//
43// zeror,zeroi - double precision vectors of the
44// real and imaginary parts of the zeros
45//
46// ---------------------------- EXAMPLE -------------------------------
47//
48// G4JTPolynomialSolver trapEq ;
49// G4double coef[8] ;
50// G4double zr[7] , zi[7] ;
51// G4int num = trapEq.FindRoots(coef,7,zr,zi);
52//
53// Translated from original TOMS493 Fortran77 routine (ANSI C, by C.Bond).
54
55// Author: Oliver Link, 15.02.2005
56// Translated to C++ and adapted to use STL vectors.
57// --------------------------------------------------------------------
58#ifndef G4JTPOLYNOMIALSOLVER_HH
59#define G4JTPOLYNOMIALSOLVER_HH 1
60
61#include <cmath>
62#include <vector>
63
64#include "globals.hh"
65
67{
68 public:
71
72 G4int FindRoots(G4double* op, G4int degree, G4double* zeror, G4double* zeroi);
73
74 private:
75 void Quadratic(G4double a, G4double b1, G4double c, G4double* sr,
76 G4double* si, G4double* lr, G4double* li);
77 void ComputeFixedShiftPolynomial(G4int l2, G4int* nz);
78 void QuadraticPolynomialIteration(G4double* uu, G4double* vv, G4int* nz);
79 void RealPolynomialIteration(G4double* sss, G4int* nz, G4int* iflag);
80 void ComputeScalarFactors(G4int* type);
81 void ComputeNextPolynomial(G4int* type);
82 void ComputeNewEstimate(G4int type, G4double* uu, G4double* vv);
83 void QuadraticSyntheticDivision(G4int n, G4double* u, G4double* v,
84 std::vector<G4double>& p,
85 std::vector<G4double>& q, G4double* a,
86 G4double* b);
87
88 private:
89 std::vector<G4double> p;
90 std::vector<G4double> qp;
91 std::vector<G4double> k;
92 std::vector<G4double> qk;
93 std::vector<G4double> svk;
94
95 G4double sr = 0.0;
96 G4double si = 0.0;
97 G4double u = 0.0, v = 0.0;
98 G4double a = 0.0, b = 0.0, c = 0.0, d = 0.0;
99 G4double a1 = 0.0, a3 = 0.0, a7 = 0.0;
100 G4double e = 0.0, f = 0.0, g = 0.0, h = 0.0;
101 G4double szr = 0.0, szi = 0.0;
102 G4double lzr = 0.0, lzi = 0.0;
103 G4int n = 0;
104
105 /* The following statements set machine constants */
106
107 static const G4double base;
108 static const G4double eta;
109 static const G4double infin;
110 static const G4double smalno;
111 static const G4double are;
112 static const G4double mre;
113 static const G4double lo;
114};
115
116#endif
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4int FindRoots(G4double *op, G4int degree, G4double *zeror, G4double *zeroi)
~G4JTPolynomialSolver()=default
G4JTPolynomialSolver()=default