Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4JTPolynomialSolver.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4JTPolynomialSolver
27//
28// Class description:
29//
30// G4JTPolynomialSolver implements the Jenkins-Traub algorithm
31// for real polynomial root finding.
32// The solver returns -1, if the leading coefficient is zero,
33// the number of roots found, otherwise.
34//
35// ----------------------------- INPUT --------------------------------
36//
37// op - double precision vector of coefficients in order of
38// decreasing powers
39// degree - integer degree of polynomial
40//
41// ----------------------------- OUTPUT -------------------------------
42//
43// zeror,zeroi - double precision vectors of the
44// real and imaginary parts of the zeros
45//
46// ---------------------------- EXAMPLE -------------------------------
47//
48// G4JTPolynomialSolver trapEq ;
49// G4double coef[8] ;
50// G4double zr[7] , zi[7] ;
51// G4int num = trapEq.FindRoots(coef,7,zr,zi);
52//
53// Translated from original TOMS493 Fortran77 routine (ANSI C, by C.Bond).
54
55// Author: Oliver Link, 15.02.2005
56// Translated to C++ and adapted to use STL vectors.
57// --------------------------------------------------------------------
58#ifndef G4JTPOLYNOMIALSOLVER_HH
59#define G4JTPOLYNOMIALSOLVER_HH 1
60
61#include <cmath>
62#include <vector>
63
64#include "globals.hh"
65
67{
68 public:
71
72 G4int FindRoots(G4double* op, G4int degree, G4double* zeror, G4double* zeroi);
73
74 private:
75 void Quadratic(G4double a, G4double b1, G4double c, G4double* sr,
76 G4double* si, G4double* lr, G4double* li);
77 void ComputeFixedShiftPolynomial(G4int l2, G4int* nz);
78 void QuadraticPolynomialIteration(G4double* uu, G4double* vv, G4int* nz);
79 void RealPolynomialIteration(G4double* sss, G4int* nz, G4int* iflag);
80 void ComputeScalarFactors(G4int* type);
81 void ComputeNextPolynomial(G4int* type);
82 void ComputeNewEstimate(G4int type, G4double* uu, G4double* vv);
83 void QuadraticSyntheticDivision(G4int n, G4double* u, G4double* v,
84 std::vector<G4double>& p,
85 std::vector<G4double>& q, G4double* a,
86 G4double* b);
87
88 private:
89 std::vector<G4double> p;
90 std::vector<G4double> qp;
91 std::vector<G4double> k;
92 std::vector<G4double> qk;
93 std::vector<G4double> svk;
94
95 G4double sr = 0.0;
96 G4double si = 0.0;
97 G4double u = 0.0, v = 0.0;
98 G4double a = 0.0, b = 0.0, c = 0.0, d = 0.0;
99 G4double a1 = 0.0, a3 = 0.0, a7 = 0.0;
100 G4double e = 0.0, f = 0.0, g = 0.0, h = 0.0;
101 G4double szr = 0.0, szi = 0.0;
102 G4double lzr = 0.0, lzi = 0.0;
103 G4int n = 0;
104
105 /* The following statements set machine constants */
106
107 static const G4double base;
108 static const G4double eta;
109 static const G4double infin;
110 static const G4double smalno;
111 static const G4double are;
112 static const G4double mre;
113 static const G4double lo;
114};
115
116#endif
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4int FindRoots(G4double *op, G4int degree, G4double *zeror, G4double *zeroi)
~G4JTPolynomialSolver()=default
G4JTPolynomialSolver()=default