Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4SampleResonance.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// ------------------------------------------------------------
29// GEANT 4 class header file
30//
31// ---------------- G4SampleResonance ----------------
32// by Henning Weber, March 2001.
33// helper class for sampling resonance masses
34// ------------------------------------------------------------
35
36
37#include "globals.hh"
38#include <iostream>
39#include "G4SampleResonance.hh"
40#include "G4DecayTable.hh"
41#include "Randomize.hh"
43
44G4ThreadLocal G4SampleResonance::minMassMapType *G4SampleResonance::minMassCache_G4MT_TLS_ = 0;
45
47{ ;;; if (!minMassCache_G4MT_TLS_) minMassCache_G4MT_TLS_ = new G4SampleResonance::minMassMapType ; G4SampleResonance::minMassMapType &minMassCache = *minMassCache_G4MT_TLS_; ;;;
48
49 G4double minResonanceMass = DBL_MAX;
50
51 if ( p->IsShortLived() )
52 {
53 minMassMapIterator iter = minMassCache.find(p);
54 if ( iter!=minMassCache.end() )
55 {
56 minResonanceMass = (*iter).second;
57 }
58 else
59 {
60 // G4cout << "--> request for " << p->GetParticleName() << G4endl;
61
62 const G4DecayTable* theDecays = p->GetDecayTable();
63 const G4int nDecays = theDecays->entries();
64
65 // To find the minimum mass of the resonance, consider only the
66 // decay channels whose branching ratio is above a given threshold.
67 // This is needed to avoid that rare and light decay channels
68 // (e.g. e+ e-) can set a very small minimum mass of the resonance.
69 // In the case that no channel with branching ratio above the
70 // threshold has been found, consider the channel with the highest
71 // branching ratio (whatever its values).
72 // Note that this solution works also when rare decays are artificially
73 // enhanced if both of the following conditions hold:
74 // 1. The enhanced rare decays have branching ratios below the threshold
75 // 2. The decay with the highest branching ratio is a "natural" decay,
76 // i.e. not a rare decay which has been artificially enhanced.
77 const G4double thresholdChannelProbability = 0.10;
78 G4double foundChannelAboveThresholdProbability = false;
79 G4double minMassMostProbableChannel = 0.0;
80 G4double highestChannelProbability = 0.0;
81 for (G4int i=0; i<nDecays; i++)
82 {
83 const G4VDecayChannel* aDecay = theDecays->GetDecayChannel(i);
84 G4double decayBr = aDecay->GetBR();
85 if (decayBr > std::min(highestChannelProbability, thresholdChannelProbability))
86 {
87 const G4int nDaughters = aDecay->GetNumberOfDaughters();
88 G4double minChannelMass = 0;
89 for (G4int j=0; j<nDaughters; j++)
90 {
91 const G4ParticleDefinition* aDaughter = const_cast<G4VDecayChannel*>(aDecay)->GetDaughter(j);
92 G4double minMass = GetMinimumMass(aDaughter);
93 if (!minMass) minMass = DBL_MAX; // exclude gamma channel;
94 minChannelMass+=minMass;
95 }
96 if (decayBr > highestChannelProbability)
97 {
98 highestChannelProbability = decayBr;
99 minMassMostProbableChannel = minChannelMass;
100 }
101 if (decayBr > thresholdChannelProbability)
102 {
103 foundChannelAboveThresholdProbability = true;
104 if (minChannelMass < minResonanceMass) minResonanceMass = minChannelMass;
105 }
106 }
107 }
108 if ( ! foundChannelAboveThresholdProbability ) {
109 minResonanceMass = minMassMostProbableChannel;
110 }
111 // replace this as soon as the compiler supports mutable!!
112 G4SampleResonance* self = const_cast<G4SampleResonance*>(this);
113 //Andrea Dotti (13Jan2013): Change needed for G4MT
114 //(self->minMassCache)[p] = minResonanceMass;
115 self->minMassCache_G4MT_TLS_->operator[](p) = minResonanceMass;
116
117 }
118 }
119 else
120 {
121
122 minResonanceMass = p->GetPDGMass();
123
124 }
125 // G4cout << "minimal mass for " << p->GetParticleName() << " is " << minResonanceMass/MeV << G4endl;
126
127 return minResonanceMass;
128}
129
130
131
133{ if (!minMassCache_G4MT_TLS_) minMassCache_G4MT_TLS_ = new G4SampleResonance::minMassMapType ;
134 return SampleMass(p->GetPDGMass(), p->GetPDGWidth(), GetMinimumMass(p), maxMass);
135}
136
137
139 const G4double gamma,
140 const G4double minMass,
141 const G4double maxMass) const
142{ if (!minMassCache_G4MT_TLS_) minMassCache_G4MT_TLS_ = new G4SampleResonance::minMassMapType ;
143 // Chooses a mass randomly between minMass and maxMass
144 // according to a Breit-Wigner function with constant
145 // width gamma and pole poleMass
146
147
148 //AR-14Nov2017 : protection for rare cases when a wide parent resonance, with a very small
149 // dynamic mass, decays into another wide (daughter) resonance: it can happen
150 // then that for the daugther resonance minMass > maxMass : in these cases,
151 // do not crash, but simply consider maxMass as the minimal mass for
152 // the sampling of the daughter resonance mass.
153 G4double protectedMinMass = minMass;
154 if ( minMass > maxMass )
155 {
156 //throw G4HadronicException(__FILE__, __LINE__,
157 // "SampleResonanceMass: mass range negative (minMass>maxMass)");
158 protectedMinMass = maxMass;
159 }
160
161 G4double returnMass;
162
163 if ( gamma < DBL_EPSILON )
164 {
165 returnMass = std::max(minMass, std::min(maxMass, poleMass));
166 }
167 else
168 {
169 //double fmin = BrWigInt0(minMass, gamma, poleMass);
170 double fmin = BrWigInt0(protectedMinMass, gamma, poleMass);
171 double fmax = BrWigInt0(maxMass, gamma, poleMass);
172 double f = fmin + (fmax-fmin)*G4UniformRand();
173 returnMass = BrWigInv(f, gamma, poleMass);
174 }
175
176 return returnMass;
177}
178
179
180
181
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4UniformRand()
Definition: Randomize.hh:52
G4VDecayChannel * GetDecayChannel(G4int index) const
G4int entries() const
G4double GetPDGWidth() const
G4DecayTable * GetDecayTable() const
std::map< const G4ParticleDefinition *, G4double, std::less< const G4ParticleDefinition * > > minMassMapType
G4double SampleMass(const G4double poleMass, const G4double gamma, const G4double minMass, const G4double maxMass) const
std::map< constG4ParticleDefinition *, G4double, std::less< constG4ParticleDefinition * > >::const_iterator minMassMapIterator
G4double GetMinimumMass(const G4ParticleDefinition *p) const
G4double GetBR() const
G4int GetNumberOfDaughters() const
#define DBL_EPSILON
Definition: templates.hh:66
#define DBL_MAX
Definition: templates.hh:62
#define G4ThreadLocal
Definition: tls.hh:77