Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4NeutronBetaDecayChannel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4NeutronBetaDecayChannel class implementation
27//
28// Author: H.Kurashige, 18 September 2001
29// --------------------------------------------------------------------
30
33#include "G4SystemOfUnits.hh"
34#include "G4DecayProducts.hh"
35#include "G4VDecayChannel.hh"
37#include "Randomize.hh"
38#include "G4RotationMatrix.hh"
39#include "G4LorentzVector.hh"
40#include "G4LorentzRotation.hh"
41
44{
45}
46
48G4NeutronBetaDecayChannel(const G4String& theParentName,
49 G4double theBR)
50 : G4VDecayChannel("Neutron Decay")
51{
52 // set names for daughter particles
53 if (theParentName == "neutron")
54 {
55 SetBR(theBR);
56 SetParent("neutron");
58 SetDaughter(0, "e-");
59 SetDaughter(1, "anti_nu_e");
60 SetDaughter(2, "proton");
61 }
62 else if (theParentName == "anti_neutron")
63 {
64 SetBR(theBR);
65 SetParent("anti_neutron");
67 SetDaughter(0, "e+");
68 SetDaughter(1, "nu_e");
69 SetDaughter(2, "anti_proton");
70 }
71 else
72 {
73#ifdef G4VERBOSE
74 if (GetVerboseLevel()>0)
75 {
76 G4cout << "G4NeutronBetaDecayChannel:: constructor :";
77 G4cout << " parent particle is not neutron but ";
78 G4cout << theParentName << G4endl;
79 }
80#endif
81 }
82}
83
85{
86}
87
90 : G4VDecayChannel(right)
91{
92}
93
96{
97 if (this != &right)
98 {
101 rbranch = right.rbranch;
102
103 // copy parent name
104 delete parent_name;
105 parent_name = new G4String(*right.parent_name);
106
107 // clear daughters_name array
109
110 // recreate array
112 if ( numberOfDaughters >0 )
113 {
115 // copy daughters name
116 for (G4int index=0; index<numberOfDaughters; ++index)
117 {
118 daughters_name[index] = new G4String(*right.daughters_name[index]);
119 }
120 }
121 }
122 return *this;
123}
124
126{
127 // This class describes free neutron beta decay kinematics.
128 // This version neglects neutron/electron polarization
129 // without Coulomb effect
130
131#ifdef G4VERBOSE
132 if (GetVerboseLevel()>1) G4cout << "G4NeutronBetaDecayChannel::DecayIt ";
133#endif
134
137
138 // parent mass
139 G4double parentmass = G4MT_parent->GetPDGMass();
140
141 // daughters'mass
142 G4double daughtermass[3];
143 G4double sumofdaughtermass = 0.0;
144 for (G4int index=0; index<3; ++index)
145 {
146 daughtermass[index] = G4MT_daughters[index]->GetPDGMass();
147 sumofdaughtermass += daughtermass[index];
148 }
149 G4double xmax = parentmass-sumofdaughtermass;
150
151 // create parent G4DynamicParticle at rest
152 G4ThreeVector dummy;
153 G4DynamicParticle* parentparticle
154 = new G4DynamicParticle( G4MT_parent, dummy, 0.0);
155
156 // create G4Decayproducts
157 G4DecayProducts *products = new G4DecayProducts(*parentparticle);
158 delete parentparticle;
159
160 // calculate daughter momentum
161 G4double daughtermomentum[3];
162
163 // calcurate electron energy
164 G4double x; // Ee
165 G4double p; // Pe
166 G4double dm = daughtermass[0]; //Me
167 G4double w; // cosine of e-nu angle
168 G4double r;
169 G4double r0;
170 const std::size_t MAX_LOOP=10000;
171 for (std::size_t loop_counter=0; loop_counter<MAX_LOOP; ++loop_counter)
172 {
173 x = xmax*G4UniformRand();
174 p = std::sqrt(x*(x+2.0*dm));
175 w = 1.0-2.0*G4UniformRand();
176 r = p*(x+dm)*(xmax-x)*(xmax-x)*(1.0+aENuCorr*p/(x+dm)*w);
177 r0 = G4UniformRand()*(xmax+dm)*(xmax+dm)*xmax*xmax*(1.0+aENuCorr);
178 if (r > r0) break;
179 }
180
181 // create daughter G4DynamicParticle
182 // rotation materix to lab frame
183 //
184 G4double costheta = 2.*G4UniformRand()-1.0;
185 G4double theta = std::acos(costheta)*rad;
186 G4double phi = twopi*G4UniformRand()*rad;
188 rm.rotateY(theta);
189 rm.rotateZ(phi);
190
191 // daughter 0 (electron) in Z direction
192 daughtermomentum[0] = p;
193 G4ThreeVector direction0(0.0, 0.0, 1.0);
194 direction0 = rm * direction0;
195 G4DynamicParticle* daughterparticle0
196 = new G4DynamicParticle(G4MT_daughters[0], direction0*daughtermomentum[0]);
197 products->PushProducts(daughterparticle0);
198
199 // daughter 1 (nutrino) in XZ plane
200 G4double eNu; // Enu
201 eNu = (parentmass-daughtermass[2])
202 * (parentmass+daughtermass[2])+(dm*dm)-2.*parentmass*(x+dm);
203 eNu /= 2.*(parentmass+p*w-(x+dm));
204 G4double cosn = w;
205 G4double phin = twopi*G4UniformRand()*rad;
206 G4double sinn = std::sqrt((1.0-cosn)*(1.0+cosn));
207
208 G4ThreeVector direction1(sinn*std::cos(phin), sinn*std::sin(phin), cosn);
209 direction1 = rm * direction1;
210 G4DynamicParticle* daughterparticle1
211 = new G4DynamicParticle( G4MT_daughters[1], direction1*eNu);
212 products->PushProducts(daughterparticle1);
213
214 // daughter 2 (proton) at REST
215 G4double eP; // Eproton
216 eP = parentmass-eNu-(x+dm)-daughtermass[2];
217 G4double pPx = -eNu*sinn;
218 G4double pPz = -p-eNu*cosn;
219 G4double pP = std::sqrt(eP*(eP+2.*daughtermass[2]));
220 G4ThreeVector direction2(pPx/pP*std::cos(phin),
221 pPx/pP*std::sin(phin), pPz/pP);
222 direction2 = rm * direction2;
223 G4DynamicParticle* daughterparticle2
224 = new G4DynamicParticle( G4MT_daughters[2], direction2*pP);
225 products->PushProducts(daughterparticle2);
226
227 // output message
228#ifdef G4VERBOSE
229 if (GetVerboseLevel()>1)
230 {
231 G4cout << "G4NeutronBetaDecayChannel::DecayIt ";
232 G4cout << " create decay products in rest frame " <<G4endl;
233 products->DumpInfo();
234 }
235#endif
236 return products;
237}
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
HepRotation & rotateZ(double delta)
Definition: Rotation.cc:87
HepRotation & rotateY(double delta)
Definition: Rotation.cc:74
void DumpInfo() const
G4int PushProducts(G4DynamicParticle *aParticle)
G4NeutronBetaDecayChannel & operator=(const G4NeutronBetaDecayChannel &)
virtual G4DecayProducts * DecayIt(G4double)
G4ParticleDefinition ** G4MT_daughters
G4String * parent_name
void SetBR(G4double value)
G4String ** daughters_name
G4int GetVerboseLevel() const
void SetNumberOfDaughters(G4int value)
G4ParticleDefinition * G4MT_parent
void CheckAndFillDaughters()
void SetDaughter(G4int anIndex, const G4ParticleDefinition *particle_type)
G4String kinematics_name
void SetParent(const G4ParticleDefinition *particle_type)