Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4PolynomialSolver.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// class G4PolynomialSolver
30//
31// Class description:
32//
33// G4PolynomialSolver allows the user to solve a polynomial equation
34// with a great precision. This is used by Implicit Equation solver.
35//
36// The Bezier clipping method is used to solve the polynomial.
37//
38// How to use it:
39// Create a class that is the function to be solved.
40// This class could have internal parameters to allow to change
41// the equation to be solved without recreating a new one.
42//
43// Define a Polynomial solver, example:
44// G4PolynomialSolver<MyFunctionClass,G4double(MyFunctionClass::*)(G4double)>
45// PolySolver (&MyFunction,
46// &MyFunctionClass::Function,
47// &MyFunctionClass::Derivative,
48// precision);
49//
50// The precision is relative to the function to solve.
51//
52// In MyFunctionClass, provide the function to solve and its derivative:
53// Example of function to provide :
54//
55// x,y,z,dx,dy,dz,Rmin,Rmax are internal variables of MyFunctionClass
56//
57// G4double MyFunctionClass::Function(G4double value)
58// {
59// G4double Lx,Ly,Lz;
60// G4double result;
61//
62// Lx = x + value*dx;
63// Ly = y + value*dy;
64// Lz = z + value*dz;
65//
66// result = TorusEquation(Lx,Ly,Lz,Rmax,Rmin);
67//
68// return result ;
69// }
70//
71// G4double MyFunctionClass::Derivative(G4double value)
72// {
73// G4double Lx,Ly,Lz;
74// G4double result;
75//
76// Lx = x + value*dx;
77// Ly = y + value*dy;
78// Lz = z + value*dz;
79//
80// result = dx*TorusDerivativeX(Lx,Ly,Lz,Rmax,Rmin);
81// result += dy*TorusDerivativeY(Lx,Ly,Lz,Rmax,Rmin);
82// result += dz*TorusDerivativeZ(Lx,Ly,Lz,Rmax,Rmin);
83//
84// return result;
85// }
86//
87// Then to have a root inside an interval [IntervalMin,IntervalMax] do the
88// following:
89//
90// MyRoot = PolySolver.solve(IntervalMin,IntervalMax);
91//
92
93// History:
94//
95// - 19.12.00 E.Medernach, First implementation
96//
97
98#ifndef G4POL_SOLVER_HH
99#define G4POL_SOLVER_HH
100
101#include "globals.hh"
102
103template <class T, class F>
105{
106public: // with description
107
108 G4PolynomialSolver(T* typeF, F func, F deriv, G4double precision);
110
111
112 G4double solve (G4double IntervalMin, G4double IntervalMax);
113
114private:
115
116 G4double Newton (G4double IntervalMin, G4double IntervalMax);
117 //General Newton method with Bezier Clipping
118
119 // Works for polynomial of order less or equal than 4.
120 // But could be changed to work for polynomial of any order providing
121 // that we find the bezier control points.
122
123 G4int BezierClipping(G4double *IntervalMin, G4double *IntervalMax);
124 // This is just one iteration of Bezier Clipping
125
126
127 T* FunctionClass ;
128 F Function ;
129 F Derivative ;
130
131 G4double Precision;
132};
133
134#include "G4PolynomialSolver.icc"
135
136#endif
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4PolynomialSolver(T *typeF, F func, F deriv, G4double precision)
G4double solve(G4double IntervalMin, G4double IntervalMax)