Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4PenelopeAnnihilationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Author: Luciano Pandola
29//
30// History:
31// --------
32// 29 Oct 2008 L Pandola Migration from process to model
33// 15 Apr 2009 V Ivanchenko Cleanup initialisation and generation of secondaries:
34// - apply internal high-energy limit only in constructor
35// - do not apply low-energy limit (default is 0)
36// - do not use G4ElementSelector
37
40#include "G4SystemOfUnits.hh"
44#include "G4DynamicParticle.hh"
45#include "G4Gamma.hh"
46
47//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
48
49
51 const G4String& nam)
52 :G4VEmModel(nam),fParticleChange(0),isInitialised(false)
53{
54 fIntrinsicLowEnergyLimit = 0.0;
55 fIntrinsicHighEnergyLimit = 100.0*GeV;
56 // SetLowEnergyLimit(fIntrinsicLowEnergyLimit);
57 SetHighEnergyLimit(fIntrinsicHighEnergyLimit);
58
59 //Calculate variable that will be used later on
60 fPielr2 = pi*classic_electr_radius*classic_electr_radius;
61
62 verboseLevel= 0;
63 // Verbosity scale:
64 // 0 = nothing
65 // 1 = warning for energy non-conservation
66 // 2 = details of energy budget
67 // 3 = calculation of cross sections, file openings, sampling of atoms
68 // 4 = entering in methods
69
70}
71
72//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
73
75{;}
76
77//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
78
80 const G4DataVector&)
81{
82 if (verboseLevel > 3)
83 G4cout << "Calling G4PenelopeAnnihilationModel::Initialise()" << G4endl;
84
85 if(verboseLevel > 0) {
86 G4cout << "Penelope Annihilation model is initialized " << G4endl
87 << "Energy range: "
88 << LowEnergyLimit() / keV << " keV - "
89 << HighEnergyLimit() / GeV << " GeV"
90 << G4endl;
91 }
92
93 if(isInitialised) return;
95 isInitialised = true;
96}
97
98//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
99
102 G4double energy,
105{
106 if (verboseLevel > 3)
107 G4cout << "Calling ComputeCrossSectionPerAtom() of G4PenelopeAnnihilationModel" <<
108 G4endl;
109
110 G4double cs = Z*ComputeCrossSectionPerElectron(energy);
111
112 if (verboseLevel > 2)
113 G4cout << "Annihilation cross Section at " << energy/keV << " keV for Z=" << Z <<
114 " = " << cs/barn << " barn" << G4endl;
115 return cs;
116}
117
118//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
119
120void G4PenelopeAnnihilationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
122 const G4DynamicParticle* aDynamicPositron,
123 G4double,
124 G4double)
125{
126 //
127 // Penelope model to sample final state for positron annihilation.
128 // Target eletrons are assumed to be free and at rest. Binding effects enabling
129 // one-photon annihilation are neglected.
130 // For annihilation at rest, two back-to-back photons are emitted, having energy of 511 keV
131 // and isotropic angular distribution.
132 // For annihilation in flight, it is used the theory from
133 // W. Heitler, The quantum theory of radiation, Oxford University Press (1954)
134 // The two photons can have different energy. The efficiency of the sampling algorithm
135 // of the photon energy from the dSigma/dE distribution is practically 100% for
136 // positrons of kinetic energy < 10 keV. It reaches a minimum (about 80%) at energy
137 // of about 10 MeV.
138 // The angle theta is kinematically linked to the photon energy, to ensure momentum
139 // conservation. The angle phi is sampled isotropically for the first gamma.
140 //
141 if (verboseLevel > 3)
142 G4cout << "Calling SamplingSecondaries() of G4PenelopeAnnihilationModel" << G4endl;
143
144 G4double kineticEnergy = aDynamicPositron->GetKineticEnergy();
145
146 // kill primary
149
150 if (kineticEnergy == 0.0)
151 {
152 //Old AtRestDoIt
153 G4double cosTheta = -1.0+2.0*G4UniformRand();
154 G4double sinTheta = std::sqrt(1.0-cosTheta*cosTheta);
155 G4double phi = twopi*G4UniformRand();
156 G4ThreeVector direction (sinTheta*std::cos(phi),sinTheta*std::sin(phi),cosTheta);
158 direction, electron_mass_c2);
160 -direction, electron_mass_c2);
161
162 fvect->push_back(firstGamma);
163 fvect->push_back(secondGamma);
164 return;
165 }
166
167 //This is the "PostStep" case (annihilation in flight)
168 G4ParticleMomentum positronDirection =
169 aDynamicPositron->GetMomentumDirection();
170 G4double gamma = 1.0 + std::max(kineticEnergy,1.0*eV)/electron_mass_c2;
171 G4double gamma21 = std::sqrt(gamma*gamma-1);
172 G4double ani = 1.0+gamma;
173 G4double chimin = 1.0/(ani+gamma21);
174 G4double rchi = (1.0-chimin)/chimin;
175 G4double gt0 = ani*ani-2.0;
176 G4double test=0.0;
177 G4double epsilon = 0;
178 do{
179 epsilon = chimin*std::pow(rchi,G4UniformRand());
180 G4double reject = ani*ani*(1.0-epsilon)+2.0*gamma-(1.0/epsilon);
181 test = G4UniformRand()*gt0-reject;
182 }while(test>0);
183
184 G4double totalAvailableEnergy = kineticEnergy + 2.0*electron_mass_c2;
185 G4double photon1Energy = epsilon*totalAvailableEnergy;
186 G4double photon2Energy = (1.0-epsilon)*totalAvailableEnergy;
187 G4double cosTheta1 = (ani-1.0/epsilon)/gamma21;
188 G4double cosTheta2 = (ani-1.0/(1.0-epsilon))/gamma21;
189
190 //G4double localEnergyDeposit = 0.;
191
192 G4double sinTheta1 = std::sqrt(1.-cosTheta1*cosTheta1);
193 G4double phi1 = twopi * G4UniformRand();
194 G4double dirx1 = sinTheta1 * std::cos(phi1);
195 G4double diry1 = sinTheta1 * std::sin(phi1);
196 G4double dirz1 = cosTheta1;
197
198 G4double sinTheta2 = std::sqrt(1.-cosTheta2*cosTheta2);
199 G4double phi2 = phi1+pi;
200 G4double dirx2 = sinTheta2 * std::cos(phi2);
201 G4double diry2 = sinTheta2 * std::sin(phi2);
202 G4double dirz2 = cosTheta2;
203
204 G4ThreeVector photon1Direction (dirx1,diry1,dirz1);
205 photon1Direction.rotateUz(positronDirection);
206 // create G4DynamicParticle object for the particle1
208 photon1Direction,
209 photon1Energy);
210 fvect->push_back(aParticle1);
211
212 G4ThreeVector photon2Direction(dirx2,diry2,dirz2);
213 photon2Direction.rotateUz(positronDirection);
214 // create G4DynamicParticle object for the particle2
216 photon2Direction,
217 photon2Energy);
218 fvect->push_back(aParticle2);
219
220 if (verboseLevel > 1)
221 {
222 G4cout << "-----------------------------------------------------------" << G4endl;
223 G4cout << "Energy balance from G4PenelopeAnnihilation" << G4endl;
224 G4cout << "Kinetic positron energy: " << kineticEnergy/keV << " keV" << G4endl;
225 G4cout << "Total available energy: " << totalAvailableEnergy/keV << " keV " << G4endl;
226 G4cout << "-----------------------------------------------------------" << G4endl;
227 G4cout << "Photon energy 1: " << photon1Energy/keV << " keV" << G4endl;
228 G4cout << "Photon energy 2: " << photon2Energy/keV << " keV" << G4endl;
229 G4cout << "Total final state: " << (photon1Energy+photon2Energy)/keV <<
230 " keV" << G4endl;
231 G4cout << "-----------------------------------------------------------" << G4endl;
232 }
233 if (verboseLevel > 0)
234 {
235 G4double energyDiff = std::fabs(totalAvailableEnergy-photon1Energy-photon2Energy);
236 if (energyDiff > 0.05*keV)
237 G4cout << "Warning from G4PenelopeAnnihilation: problem with energy conservation: " <<
238 (photon1Energy+photon2Energy)/keV <<
239 " keV (final) vs. " <<
240 totalAvailableEnergy/keV << " keV (initial)" << G4endl;
241 }
242 return;
243}
244
245//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
246
247G4double G4PenelopeAnnihilationModel:: ComputeCrossSectionPerElectron(G4double energy)
248{
249 //
250 // Penelope model to calculate cross section for positron annihilation.
251 // The annihilation cross section per electron is calculated according
252 // to the Heitler formula
253 // W. Heitler, The quantum theory of radiation, Oxford University Press (1954)
254 // in the assumptions of electrons free and at rest.
255 //
256 G4double gamma = 1.0+std::max(energy,1.0*eV)/electron_mass_c2;
257 G4double gamma2 = gamma*gamma;
258 G4double f2 = gamma2-1.0;
259 G4double f1 = std::sqrt(f2);
260 G4double crossSection = fPielr2*((gamma2+4.0*gamma+1.0)*std::log(gamma+f1)/f2
261 - (gamma+3.0)/f1)/(gamma+1.0);
262 return crossSection;
263}
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
void SetProposedKineticEnergy(G4double proposedKinEnergy)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
G4PenelopeAnnihilationModel(const G4ParticleDefinition *p=0, const G4String &processName="PenAnnih")
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4ParticleChangeForGamma * fParticleChange
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:529
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:522
void ProposeTrackStatus(G4TrackStatus status)