Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4PreCompoundIon.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// -------------------------------------------------------------------
29//
30// GEANT4 Class file
31//
32//
33// File name: G4PreCompoundIon
34//
35// Author: V.Lara
36//
37// Modified:
38// 10.02.2009 J. M. Quesada fixed bug in density level of light fragments
39// 20.08.2010 V.Ivanchenko added G4Pow and G4PreCompoundParameters pointers
40// use int Z and A and cleanup
41//
42
43#include "G4PreCompoundIon.hh"
45
46G4PreCompoundIon::
47G4PreCompoundIon(const G4ParticleDefinition* part,
48 G4VCoulombBarrier* aCoulombBarrier)
49 : G4PreCompoundFragment(part,aCoulombBarrier)
50{
52 fact = 0.75*CLHEP::millibarn/(CLHEP::pi*r0*r0*r0);
53}
54
56{}
57
60 const G4Fragment& aFragment)
61{
62 if ( !IsItPossible(aFragment) ) { return 0.0; }
63 G4double efinal = eKin + GetBindingEnergy();
64 //G4cout << "Efinal= " << efinal << " Ekin= " << eKin << G4endl;
65 if(efinal <= 0.0 ) { return 0.0; }
66
67 G4double U = aFragment.GetExcitationEnergy();
68 G4int P = aFragment.GetNumberOfParticles();
69 G4int H = aFragment.GetNumberOfHoles();
70 G4int A = GetA();
71 G4int N = P + H;
72
73 G4double g0 = (6.0/pi2)*aFragment.GetA_asInt()*theParameters->GetLevelDensity();
75
76 //JMQ 06/02/209 This is THE BUG that was killing cluster emission
77 // G4double gj = (6.0/pi2)*GetA() *
78 // G4PreCompoundParameters::GetAddress()->GetLevelDensity();
79
80 G4double gj = g1;
81
82 G4double A0 = G4double(P*P+H*H+P-3*H)/(4.0*g0);
83 G4double A1 = std::max(0.0,(A0*g0 + A*(A-2*P-1)*0.25)/g1);
84
85 G4double E0 = U - A0;
86 //G4cout << "E0= " << E0 << G4endl;
87 if (E0 <= 0.0) { return 0.0; }
88
89 G4double E1 = (std::max(0.0,GetMaximalKineticEnergy() - eKin - A1));
90
91 G4double Aj = A*(A+1)/(4.0*gj);
92 G4double Ej = std::max(0.0,efinal - Aj);
93
94 G4double rj = GetRj(P, aFragment.GetNumberOfCharged());
95 G4double xs = CrossSection(eKin);
96
97 //G4cout << "rj= " << rj << " xs= " << xs << G4endl;
98
99 // JMQ 10/02/09 reshaping of the formula (unnecessary std::pow elimitated)
100 /*
101 G4double r0 = theParameters->Getr0();
102 G4double pA = (3.0/4.0) * std::sqrt(std::max(0.0, 2.0/(GetReducedMass()*
103 (eKin+GetBindingEnergy()))))/(pi * r0 * r0 *r0* GetRestA())*
104 eKin*CrossSection(eKin)*millibarn*
105 CoalescenceFactor(aFragment.GetA_asInt()) * FactorialFactor(N,P)*
106 GetRj(aFragment.GetNumberOfParticles(), aFragment.GetNumberOfCharged());
107
108 G4double pB = std::pow((g1*E1)/(g0*E0),N-GetA()-1.0)*(g1/g0);
109 G4double pC = std::pow((gj*Ej)/(g0*E0),GetA()-1.0)*(gj/g0)/E0;
110 pA *= pB * pC;
111 */
112
113 G4double pA = fact*eKin*xs*rj
114 * CoalescenceFactor(aFragment.GetA_asInt()) * FactorialFactor(N,P)
115 * std::sqrt(2.0/(GetReducedMass()*efinal))
116 * g4pow->powN(g1*E1/(g0*E0), N-A-1)
117 * g4pow->powN(gj*Ej/(g0*E0), A-1)*gj*g1/(g0*g0*E0*GetRestA());
118
119 return pA;
120}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4int GetNumberOfParticles() const
Definition: G4Fragment.hh:305
G4int GetNumberOfHoles() const
Definition: G4Fragment.hh:325
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:235
G4int GetNumberOfCharged() const
Definition: G4Fragment.hh:310
G4int GetA_asInt() const
Definition: G4Fragment.hh:218
G4double powN(G4double x, G4int n)
Definition: G4Pow.cc:98
virtual G4double FactorialFactor(G4int N, G4int P)=0
virtual G4double CoalescenceFactor(G4int A)=0
virtual ~G4PreCompoundIon()
virtual G4double GetRj(G4int NumberParticles, G4int NumberCharged)=0
virtual G4double CrossSection(G4double ekin)=0
virtual G4double ProbabilityDistributionFunction(G4double eKin, const G4Fragment &aFragment)
G4double GetReducedMass() const
G4bool IsItPossible(const G4Fragment &aFragment) const
G4double GetBindingEnergy() const
G4PreCompoundParameters * theParameters
G4int GetRestA() const
G4double GetMaximalKineticEnergy() const