Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4HEKaonZeroInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
29// G4 Process: Gheisha High Energy Collision model.
30// This includes the high energy cascading model, the two-body-resonance model
31// and the low energy two-body model. Not included are the low energy stuff
32// like nuclear reactions, nuclear fission without any cascading and all
33// processes for particles at rest.
34// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
35// H. Fesefeldt, RWTH-Aachen, 23-October-1996
36
38#include "globals.hh"
39#include "G4ios.hh"
41
42void G4HEKaonZeroInelastic::ModelDescription(std::ostream& outFile) const
43{
44 outFile << "G4HEKaonZeroInelastic is one of the High Energy\n"
45 << "Parameterized (HEP) models used to implement inelastic\n"
46 << "K0 scattering from nuclei. It is a re-engineered\n"
47 << "version of the GHEISHA code of H. Fesefeldt. It divides the\n"
48 << "initial collision products into backward- and forward-going\n"
49 << "clusters which are then decayed into final state hadrons.\n"
50 << "The model does not conserve energy on an event-by-event\n"
51 << "basis. It may be applied to K0 with initial energies\n"
52 << "above 20 GeV.\n";
53}
54
55
58 G4Nucleus& targetNucleus)
59{
60 G4HEVector* pv = new G4HEVector[MAXPART];
61 const G4HadProjectile* aParticle = &aTrack;
62 const G4double A = targetNucleus.GetA_asInt();
63 const G4double Z = targetNucleus.GetZ_asInt();
64 G4HEVector incidentParticle(aParticle);
65
66 G4double atomicNumber = Z;
67 G4double atomicWeight = A;
68
69 G4int incidentCode = incidentParticle.getCode();
70 G4double incidentMass = incidentParticle.getMass();
71 G4double incidentTotalEnergy = incidentParticle.getEnergy();
72
73 // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
74 // DHW 19 May 2011: variable set but not used
75
76 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
77
78 if (incidentKineticEnergy < 1.)
79 G4cout << "GHEKaonZeroInelastic: incident energy < 1 GeV" << G4endl;;
80
81 if (verboseLevel > 1) {
82 G4cout << "G4HEKaonZeroInelastic::ApplyYourself" << G4endl;
83 G4cout << "incident particle " << incidentParticle.getName()
84 << "mass " << incidentMass
85 << "kinetic energy " << incidentKineticEnergy
86 << G4endl;
87 G4cout << "target material with (A,Z) = ("
88 << atomicWeight << "," << atomicNumber << ")" << G4endl;
89 }
90
91 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
92 atomicWeight, atomicNumber);
93 if (verboseLevel > 1)
94 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
95
96 incidentKineticEnergy -= inelasticity;
97
98 G4double excitationEnergyGNP = 0.;
99 G4double excitationEnergyDTA = 0.;
100
101 G4double excitation = NuclearExcitation(incidentKineticEnergy,
102 atomicWeight, atomicNumber,
103 excitationEnergyGNP,
104 excitationEnergyDTA);
105 if (verboseLevel > 1)
106 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
107 << excitationEnergyDTA << G4endl;
108
109 incidentKineticEnergy -= excitation;
110 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
111 // incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
112 // *(incidentTotalEnergy+incidentMass));
113 // DHW 19 May 2011: variable set but not used
114
115 G4HEVector targetParticle;
116 if (G4UniformRand() < atomicNumber/atomicWeight) {
117 targetParticle.setDefinition("Proton");
118 } else {
119 targetParticle.setDefinition("Neutron");
120 }
121
122 G4double targetMass = targetParticle.getMass();
123 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
124 + targetMass*targetMass
125 + 2.0*targetMass*incidentTotalEnergy);
126 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
127
128 G4bool inElastic = true;
129 vecLength = 0;
130
131 if (verboseLevel > 1)
132 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
133 << incidentCode << G4endl;
134
135 G4bool successful = false;
136
137 FirstIntInCasKaonZero(inElastic, availableEnergy, pv, vecLength,
138 incidentParticle, targetParticle, atomicWeight);
139
140 if (verboseLevel > 1)
141 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
142
143 if ((vecLength > 0) && (availableEnergy > 1.))
144 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
145 pv, vecLength,
146 incidentParticle, targetParticle);
147
148 HighEnergyCascading(successful, pv, vecLength,
149 excitationEnergyGNP, excitationEnergyDTA,
150 incidentParticle, targetParticle,
151 atomicWeight, atomicNumber);
152 if (!successful)
154 excitationEnergyGNP, excitationEnergyDTA,
155 incidentParticle, targetParticle,
156 atomicWeight, atomicNumber);
157 if (!successful)
158 MediumEnergyCascading(successful, pv, vecLength,
159 excitationEnergyGNP, excitationEnergyDTA,
160 incidentParticle, targetParticle,
161 atomicWeight, atomicNumber);
162
163 if (!successful)
165 excitationEnergyGNP, excitationEnergyDTA,
166 incidentParticle, targetParticle,
167 atomicWeight, atomicNumber);
168 if (!successful)
169 QuasiElasticScattering(successful, pv, vecLength,
170 excitationEnergyGNP, excitationEnergyDTA,
171 incidentParticle, targetParticle,
172 atomicWeight, atomicNumber);
173 if (!successful)
174 ElasticScattering(successful, pv, vecLength,
175 incidentParticle,
176 atomicWeight, atomicNumber);
177
178 if (!successful)
179 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
180 << G4endl;
181
183
184 delete [] pv;
186 return &theParticleChange;
187}
188
189
190void
192 const G4double availableEnergy,
193 G4HEVector pv[],
194 G4int& vecLen,
195 const G4HEVector& incidentParticle,
196 const G4HEVector& targetParticle,
197 const G4double atomicWeight)
198
199// Kaon0 undergoes interaction with nucleon within a nucleus. Check if it is
200// energetically possible to produce pions/kaons. In not, assume nuclear excitation
201// occurs and input particle is degraded in energy. No other particles are produced.
202// If reaction is possible, find the correct number of pions/protons/neutrons
203// produced using an interpolation to multiplicity data. Replace some pions or
204// protons/neutrons by kaons or strange baryons according to the average
205// multiplicity per inelastic reaction.
206{
207 static const G4double expxu = 82.; // upper bound for arg. of exp
208 static const G4double expxl = -expxu; // lower bound for arg. of exp
209
210 static const G4double protb = 0.7;
211 static const G4double neutb = 0.7;
212 static const G4double c = 1.25;
213
214 static const G4int numMul = 1200;
215 static const G4int numSec = 60;
216
218 G4int protonCode = Proton.getCode();
219
220 G4int targetCode = targetParticle.getCode();
221 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
222
223 static G4bool first = true;
224 static G4double protmul[numMul], protnorm[numSec]; // proton constants
225 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
226
227 // misc. local variables
228 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
229
230 G4int i, counter, nt, npos, nneg, nzero;
231
232 if( first )
233 { // compute normalization constants, this will only be done once
234 first = false;
235 for( i=0; i<numMul; i++ )protmul[i] = 0.0;
236 for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
237 counter = -1;
238 for( npos=0; npos<(numSec/3); npos++ )
239 {
240 for( nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++ )
241 {
242 for( nzero=0; nzero<numSec/3; nzero++ )
243 {
244 if( ++counter < numMul )
245 {
246 nt = npos+nneg+nzero;
247 if( (nt>0) && (nt<=numSec) )
248 {
249 protmul[counter] =
250 pmltpc(npos,nneg,nzero,nt,protb,c) ;
251 protnorm[nt-1] += protmul[counter];
252 }
253 }
254 }
255 }
256 }
257 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
258 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
259 counter = -1;
260 for( npos=0; npos<numSec/3; npos++ )
261 {
262 for( nneg=npos; nneg<=(npos+2); nneg++ )
263 {
264 for( nzero=0; nzero<numSec/3; nzero++ )
265 {
266 if( ++counter < numMul )
267 {
268 nt = npos+nneg+nzero;
269 if( (nt>0) && (nt<=numSec) )
270 {
271 neutmul[counter] =
272 pmltpc(npos,nneg,nzero,nt,neutb,c);
273 neutnorm[nt-1] += neutmul[counter];
274 }
275 }
276 }
277 }
278 }
279 for( i=0; i<numSec; i++ )
280 {
281 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
282 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
283 }
284 } // end of initialization
285
286
287 // initialize the first two places
288 // the same as beam and target
289 pv[0] = incidentParticle;
290 pv[1] = targetParticle;
291 vecLen = 2;
292
293 if( !inElastic )
294 { // quasi-elastic scattering, no pions produced
295 if( targetCode == protonCode )
296 {
297 G4double cech[] = {0.33,0.27,0.29,0.31,0.27,0.18,0.13,0.10,0.09,0.07};
298 G4int iplab = G4int( std::min( 9.0, incidentTotalMomentum*5. ) );
299 if( G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
300 { // charge exchange K+ n -> K0 p
301 pv[0] = KaonPlus;
302 pv[1] = Neutron;
303 }
304 }
305 return;
306 }
307 else if (availableEnergy <= PionPlus.getMass())
308 return;
309
310 // inelastic scattering
311
312 npos = 0, nneg = 0, nzero = 0;
313 G4double eab = availableEnergy;
314 G4int ieab = G4int( eab*5.0 );
315
316 G4double supp[] = {0., 0.4, 0.55, 0.65, 0.75, 0.82, 0.86, 0.90, 0.94, 0.98};
317 if( (ieab <= 9) && (G4UniformRand() >= supp[ieab]) )
318 {
319// suppress high multiplicity events at low momentum
320// only one additional pion will be produced
321 G4double w0, wp, wm, wt, ran;
322 if( targetCode == neutronCode ) // target is a neutron
323 {
324 w0 = - sqr(1.+protb)/(2.*c*c);
325 w0 = std::exp(w0);
326 wm = - sqr(-1.+protb)/(2.*c*c);
327 wm = std::exp(wm);
328 w0 = w0/2.;
329 wm = wm*1.5;
330 if( G4UniformRand() < w0/(w0+wm) ) { npos = 0; nneg = 0; nzero = 1; }
331 else
332 { npos = 0; nneg = 1; nzero = 0; }
333 }
334 else
335 { // target is a proton
336 w0 = -sqr(1.+neutb)/(2.*c*c);
337 wp = w0 = std::exp(w0);
338 wm = -sqr(-1.+neutb)/(2.*c*c);
339 wm = std::exp(wm);
340 wt = w0+wp+wm;
341 wp = w0+wp;
342 ran = G4UniformRand();
343 if( ran < w0/wt)
344 { npos = 0; nneg = 0; nzero = 1; }
345 else if( ran < wp/wt)
346 { npos = 1; nneg = 0; nzero = 0; }
347 else
348 { npos = 0; nneg = 1; nzero = 0; }
349 }
350 }
351 else
352 {
353// number of total particles vs. centre of mass Energy - 2*proton mass
354
355 G4double aleab = std::log(availableEnergy);
356 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
357 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
358
359// normalization constant for kno-distribution.
360// calculate first the sum of all constants, check for numerical problems.
361 G4double test, dum, anpn = 0.0;
362
363 for (nt=1; nt<=numSec; nt++) {
364 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
365 dum = pi*nt/(2.0*n*n);
366 if (std::fabs(dum) < 1.0) {
367 if( test >= 1.0e-10 )anpn += dum*test;
368 } else {
369 anpn += dum*test;
370 }
371 }
372
373 G4double ran = G4UniformRand();
374 G4double excs = 0.0;
375 if( targetCode == protonCode )
376 {
377 counter = -1;
378 for( npos=0; npos<numSec/3; npos++ )
379 {
380 for( nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++ )
381 {
382 for (nzero=0; nzero<numSec/3; nzero++) {
383 if (++counter < numMul) {
384 nt = npos+nneg+nzero;
385 if ( (nt>0) && (nt<=numSec) ) {
386 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
387 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
388 if (std::fabs(dum) < 1.0) {
389 if( test >= 1.0e-10 )excs += dum*test;
390 } else {
391 excs += dum*test;
392 }
393 if (ran < excs) goto outOfLoop; //----------------------->
394 }
395 }
396 }
397 }
398 }
399
400 // 3 previous loops continued to the end
401 inElastic = false; // quasi-elastic scattering
402 return;
403 }
404 else
405 { // target must be a neutron
406 counter = -1;
407 for( npos=0; npos<numSec/3; npos++ )
408 {
409 for( nneg=npos; nneg<=(npos+2); nneg++ )
410 {
411 for (nzero=0; nzero<numSec/3; nzero++) {
412 if (++counter < numMul) {
413 nt = npos+nneg+nzero;
414 if ( (nt>=1) && (nt<=numSec) ) {
415 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
416 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
417 if (std::fabs(dum) < 1.0) {
418 if( test >= 1.0e-10 )excs += dum*test;
419 } else {
420 excs += dum*test;
421 }
422 if (ran < excs) goto outOfLoop; // -------------------------->
423 }
424 }
425 }
426 }
427 }
428 // 3 previous loops continued to the end
429 inElastic = false; // quasi-elastic scattering.
430 return;
431 }
432 }
433 outOfLoop: // <-----------------------------------------------
434
435 if( targetCode == neutronCode)
436 {
437 if( npos == nneg)
438 {
439 }
440 else if (npos == (nneg-1))
441 {
442 if( G4UniformRand() < 0.5)
443 {
444 pv[0] = KaonPlus;
445 }
446 else
447 {
448 pv[1] = Proton;
449 }
450 }
451 else
452 {
453 pv[0] = KaonPlus;
454 pv[1] = Proton;
455 }
456 }
457 else
458 {
459 if( npos == nneg )
460 {
461 if( G4UniformRand() < 0.25)
462 {
463 pv[0] = KaonPlus;
464 pv[1] = Neutron;
465 }
466 else
467 {
468 }
469 }
470 else if ( npos == (nneg+1))
471 {
472 pv[1] = Neutron;
473 }
474 else
475 {
476 pv[0] = KaonPlus;
477 }
478 }
479
480
481 nt = npos + nneg + nzero;
482 while ( nt > 0)
483 {
484 G4double ran = G4UniformRand();
485 if ( ran < (G4double)npos/nt)
486 {
487 if( npos > 0 )
488 { pv[vecLen++] = PionPlus;
489 npos--;
490 }
491 }
492 else if ( ran < (G4double)(npos+nneg)/nt)
493 {
494 if( nneg > 0 )
495 {
496 pv[vecLen++] = PionMinus;
497 nneg--;
498 }
499 }
500 else
501 {
502 if( nzero > 0 )
503 {
504 pv[vecLen++] = PionZero;
505 nzero--;
506 }
507 }
508 nt = npos + nneg + nzero;
509 }
510 if (verboseLevel > 1)
511 {
512 G4cout << "Particles produced: " ;
513 G4cout << pv[0].getName() << " " ;
514 G4cout << pv[1].getName() << " " ;
515 for (i=2; i < vecLen; i++)
516 {
517 G4cout << pv[i].getName() << " " ;
518 }
519 G4cout << G4endl;
520 }
521 return; }
522
523
524
525
526
527
528
529
530
@ stopAndKill
@ neutronCode
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4HEVector PionPlus
G4HEVector KaonPlus
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector Neutron
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
G4HEVector PionMinus
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector PionZero
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector Proton
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void FirstIntInCasKaonZero(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
virtual void ModelDescription(std::ostream &) const
G4double getEnergy() const
Definition: G4HEVector.cc:313
G4double getMass() const
Definition: G4HEVector.cc:361
G4int getCode() const
Definition: G4HEVector.cc:426
G4double getTotalMomentum() const
Definition: G4HEVector.cc:166
G4String getName() const
Definition: G4HEVector.cc:431
void setDefinition(G4String name)
Definition: G4HEVector.cc:812
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
T sqr(const T &x)
Definition: templates.hh:145