Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4AnnihiToMuPair.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// ------------ G4AnnihiToMuPair physics process ------
30// by H.Burkhardt, S. Kelner and R. Kokoulin, November 2002
31// -----------------------------------------------------------------------------
32//
33//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......//
34//
35// 27.01.03 : first implementation (hbu)
36// 04.02.03 : cosmetic simplifications (mma)
37// 25.10.04 : migrade to new interfaces of ParticleChange (vi)
38//
39//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
40
41#include "G4AnnihiToMuPair.hh"
42
43#include "G4ios.hh"
44#include "Randomize.hh"
46#include "G4SystemOfUnits.hh"
47
48#include "G4Positron.hh"
49#include "G4MuonPlus.hh"
50#include "G4MuonMinus.hh"
51#include "G4Material.hh"
52#include "G4Step.hh"
53
54//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
55
56using namespace std;
57
59 G4ProcessType type):G4VDiscreteProcess (processName, type)
60{
61 //e+ Energy threshold
62 const G4double Mu_massc2 = G4MuonPlus::MuonPlus()->GetPDGMass();
63 LowestEnergyLimit = 2*Mu_massc2*Mu_massc2/electron_mass_c2 - electron_mass_c2;
64
65 //modele ok up to 1000 TeV due to neglected Z-interference
66 HighestEnergyLimit = 1000*TeV;
67
68 CurrentSigma = 0.0;
69 CrossSecFactor = 1.;
71
72}
73
74//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
75
77{ }
78
79//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
80
82{
83 return ( &particle == G4Positron::Positron() );
84}
85
86//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
87
89// Build cross section and mean free path tables
90//here no tables, just calling PrintInfoDefinition
91{
92 CurrentSigma = 0.0;
94}
95
96//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
97
99// Set the factor to artificially increase the cross section
100{
101 CrossSecFactor = fac;
102 G4cout << "The cross section for AnnihiToMuPair is artificially "
103 << "increased by the CrossSecFactor=" << CrossSecFactor << G4endl;
104}
105
106//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
107
109// Calculates the microscopic cross section in GEANT4 internal units.
110// It gives a good description from threshold to 1000 GeV
111{
112 static const G4double Mmuon = G4MuonPlus::MuonPlus()->GetPDGMass();
113 static const G4double Rmuon = elm_coupling/Mmuon; //classical particle radius
114 static const G4double Sig0 = pi*Rmuon*Rmuon/3.; //constant in crossSection
115
116 G4double CrossSection = 0.;
117 if (Epos < LowestEnergyLimit) return CrossSection;
118
119 G4double xi = LowestEnergyLimit/Epos;
120 G4double SigmaEl = Sig0*xi*(1.+xi/2.)*sqrt(1.-xi); // per electron
121 CrossSection = SigmaEl*Z; // number of electrons per atom
122 return CrossSection;
123}
124
125//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
126
128 const G4Material* aMaterial)
129{
130 const G4ElementVector* theElementVector = aMaterial->GetElementVector();
131 const G4double* NbOfAtomsPerVolume = aMaterial->GetVecNbOfAtomsPerVolume();
132
133 G4double SIGMA = 0.0;
134
135 for ( size_t i=0 ; i < aMaterial->GetNumberOfElements() ; ++i )
136 {
137 G4double AtomicZ = (*theElementVector)[i]->GetZ();
138 SIGMA += NbOfAtomsPerVolume[i] *
139 ComputeCrossSectionPerAtom(PositronEnergy,AtomicZ);
140 }
141 return SIGMA;
142}
143
144//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
145
148
149// returns the positron mean free path in GEANT4 internal units
150
151{
152 const G4DynamicParticle* aDynamicPositron = aTrack.GetDynamicParticle();
153 G4double PositronEnergy = aDynamicPositron->GetKineticEnergy()
154 +electron_mass_c2;
155 G4Material* aMaterial = aTrack.GetMaterial();
156 CurrentSigma = CrossSectionPerVolume(PositronEnergy, aMaterial);
157
158 // increase the CrossSection by CrossSecFactor (default 1)
159 G4double mfp = DBL_MAX;
160 if(CurrentSigma > DBL_MIN) mfp = 1.0/(CurrentSigma*CrossSecFactor);
161
162 return mfp;
163}
164
165//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
166
168 const G4Step& aStep)
169//
170// generation of e+e- -> mu+mu-
171//
172{
173
175 static const G4double Mele=electron_mass_c2;
176 static const G4double Mmuon=G4MuonPlus::MuonPlus()->GetPDGMass();
177
178 // current Positron energy and direction, return if energy too low
179 const G4DynamicParticle *aDynamicPositron = aTrack.GetDynamicParticle();
180 G4double Epos = aDynamicPositron->GetKineticEnergy() + Mele;
181
182 // test of cross section
183 if(CurrentSigma*G4UniformRand() >
184 CrossSectionPerVolume(Epos, aTrack.GetMaterial()))
185 {
186 return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
187 }
188
189 if (Epos < LowestEnergyLimit) {
190 return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
191 }
192
193 G4ParticleMomentum PositronDirection =
194 aDynamicPositron->GetMomentumDirection();
195 G4double xi = LowestEnergyLimit/Epos; // xi is always less than 1,
196 // goes to 0 at high Epos
197
198 // generate cost
199 //
200 G4double cost;
201 do cost = 2.*G4UniformRand()-1.;
202 while (2.*G4UniformRand() > 1.+xi+cost*cost*(1.-xi) );
203 //1+cost**2 at high Epos
204 G4double sint = sqrt(1.-cost*cost);
205
206 // generate phi
207 //
208 G4double phi=2.*pi*G4UniformRand();
209
210 G4double Ecm = sqrt(0.5*Mele*(Epos+Mele));
211 G4double Pcm = sqrt(Ecm*Ecm-Mmuon*Mmuon);
212 G4double beta = sqrt((Epos-Mele)/(Epos+Mele));
213 G4double gamma = Ecm/Mele; // =sqrt((Epos+Mele)/(2.*Mele));
214 G4double Pt = Pcm*sint;
215
216 // energy and momentum of the muons in the Lab
217 //
218 G4double EmuPlus = gamma*( Ecm+cost*beta*Pcm);
219 G4double EmuMinus = gamma*( Ecm-cost*beta*Pcm);
220 G4double PmuPlusZ = gamma*(beta*Ecm+cost* Pcm);
221 G4double PmuMinusZ = gamma*(beta*Ecm-cost* Pcm);
222 G4double PmuPlusX = Pt*cos(phi);
223 G4double PmuPlusY = Pt*sin(phi);
224 G4double PmuMinusX =-Pt*cos(phi);
225 G4double PmuMinusY =-Pt*sin(phi);
226 // absolute momenta
227 G4double PmuPlus = sqrt(Pt*Pt+PmuPlusZ *PmuPlusZ );
228 G4double PmuMinus = sqrt(Pt*Pt+PmuMinusZ*PmuMinusZ);
229
230 // mu+ mu- directions for Positron in z-direction
231 //
233 MuPlusDirection ( PmuPlusX/PmuPlus, PmuPlusY/PmuPlus, PmuPlusZ/PmuPlus );
235 MuMinusDirection(PmuMinusX/PmuMinus,PmuMinusY/PmuMinus,PmuMinusZ/PmuMinus);
236
237 // rotate to actual Positron direction
238 //
239 MuPlusDirection.rotateUz(PositronDirection);
240 MuMinusDirection.rotateUz(PositronDirection);
241
243 // create G4DynamicParticle object for the particle1
244 G4DynamicParticle* aParticle1= new G4DynamicParticle(
245 G4MuonPlus::MuonPlus(),MuPlusDirection,EmuPlus-Mmuon);
246 aParticleChange.AddSecondary(aParticle1);
247 // create G4DynamicParticle object for the particle2
248 G4DynamicParticle* aParticle2= new G4DynamicParticle(
249 G4MuonMinus::MuonMinus(),MuMinusDirection,EmuMinus-Mmuon);
250 aParticleChange.AddSecondary(aParticle2);
251
252 // Kill the incident positron
253 //
256
257 return &aParticleChange;
258}
259
260//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
261
263{
264 G4String comments ="e+e->mu+mu- annihilation, atomic e- at rest, SubType=.";
265 G4cout << G4endl << GetProcessName() << ": " << comments
267 G4cout << " threshold at " << LowestEnergyLimit/GeV << " GeV"
268 << " good description up to "
269 << HighestEnergyLimit/TeV << " TeV for all Z." << G4endl;
270}
271
272//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
std::vector< G4Element * > G4ElementVector
G4ForceCondition
G4ProcessType
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep)
void BuildPhysicsTable(const G4ParticleDefinition &)
G4double ComputeCrossSectionPerAtom(G4double PositronEnergy, G4double AtomicZ)
G4bool IsApplicable(const G4ParticleDefinition &)
void SetCrossSecFactor(G4double fac)
G4double CrossSectionPerVolume(G4double PositronEnergy, const G4Material *)
G4AnnihiToMuPair(const G4String &processName="AnnihiToMuPair", G4ProcessType type=fElectromagnetic)
G4double GetMeanFreePath(const G4Track &aTrack, G4double previousStepSize, G4ForceCondition *)
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
const G4double * GetVecNbOfAtomsPerVolume() const
Definition: G4Material.hh:205
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100
static G4MuonPlus * MuonPlus()
Definition: G4MuonPlus.cc:99
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
virtual void Initialize(const G4Track &)
static G4Positron * Positron()
Definition: G4Positron.cc:94
Definition: G4Step.hh:78
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeTrackStatus(G4TrackStatus status)
void SetNumberOfSecondaries(G4int totSecondaries)
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:289
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:403
G4int GetProcessSubType() const
Definition: G4VProcess.hh:397
const G4String & GetProcessName() const
Definition: G4VProcess.hh:379
#define DBL_MIN
Definition: templates.hh:75
#define DBL_MAX
Definition: templates.hh:83