Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4StatMFMacroChemicalPotential.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// Hadronic Process: Nuclear De-excitations
30// by V. Lara
31
34
35// operators definitions
37G4StatMFMacroChemicalPotential::operator=(const G4StatMFMacroChemicalPotential & )
38{
39 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::operator= meant to not be accessable");
40 return *this;
41}
42
43G4bool G4StatMFMacroChemicalPotential::operator==(const G4StatMFMacroChemicalPotential & ) const
44{
45 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::operator== meant to not be accessable");
46 return false;
47}
48
49
50G4bool G4StatMFMacroChemicalPotential::operator!=(const G4StatMFMacroChemicalPotential & ) const
51{
52 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::operator!= meant to not be accessable");
53 return true;
54}
55
56
57
58
60 // Calculate Chemical potential \nu
61{
62 G4double CP = ((3./5.)*elm_coupling/G4StatMFParameters::Getr0())*
63 (1.0-1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1.0/3.0));
64
65 // Initial value for _ChemPotentialNu
66 _ChemPotentialNu = (theZ/theA)*(8.0*G4StatMFParameters::GetGamma0()+2.0*CP*std::pow(theA,2./3.)) -
68
69
70 G4double ChemPa = _ChemPotentialNu;
71 G4double ChemPb = 0.5*_ChemPotentialNu;
72
73 G4double fChemPa = this->operator()(ChemPa);
74 G4double fChemPb = this->operator()(ChemPb);
75
76 if (fChemPa*fChemPb > 0.0) {
77 // bracketing the solution
78 if (fChemPa < 0.0) {
79 do {
80 ChemPb -= 1.5*std::abs(ChemPb-ChemPa);
81 fChemPb = this->operator()(ChemPb);
82 } while (fChemPb < 0.0);
83 } else {
84 do {
85 ChemPb += 1.5*std::abs(ChemPb-ChemPa);
86 fChemPb = this->operator()(ChemPb);
87 } while (fChemPb > 0.0);
88 }
89 }
90
93 theSolver->SetIntervalLimits(ChemPa,ChemPb);
94 // if (!theSolver->Crenshaw(*this))
95 if (!theSolver->Brent(*this)){
96 G4cerr <<"G4StatMFMacroChemicalPotential:"<<" ChemPa="<<ChemPa<<" ChemPb="<<ChemPb<< G4endl;
97 G4cerr <<"G4StatMFMacroChemicalPotential:"<<" fChemPa="<<fChemPa<<" fChemPb="<<fChemPb<< G4endl;
98 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::CalcChemicalPotentialNu: I couldn't find the root.");
99 }
100 _ChemPotentialNu = theSolver->GetRoot();
101 delete theSolver;
102 return _ChemPotentialNu;
103}
104
105
106
107G4double G4StatMFMacroChemicalPotential::CalcMeanZ(const G4double nu)
108{
109 std::vector<G4VStatMFMacroCluster*>::iterator i;
110 for (i= _theClusters->begin()+1; i != _theClusters->end(); ++i)
111 {
112 (*i)->CalcZARatio(nu);
113 }
114 CalcChemicalPotentialMu(nu);
115 // This is important, the Z over A ratio for proton and neutron depends on the
116 // chemical potential Mu, while for the first guess for Chemical potential mu
117 // some values of Z over A ratio. This is the reason for that.
118 (*_theClusters->begin())->CalcZARatio(nu);
119
120 G4double MeanZ = 0.0;
121 G4int n = 1;
122 for (i = _theClusters->begin(); i != _theClusters->end(); ++i)
123 {
124 MeanZ += static_cast<G4double>(n++) *
125 (*i)->GetZARatio() *
126 (*i)->GetMeanMultiplicity();
127 }
128 return MeanZ;
129}
130
131
132void G4StatMFMacroChemicalPotential::CalcChemicalPotentialMu(const G4double nu)
133 // Calculate Chemical potential \mu
134 // For that is necesary to calculate mean multiplicities
135{
136 G4StatMFMacroMultiplicity * theMultip = new
137 G4StatMFMacroMultiplicity(theA,_Kappa,_MeanTemperature,nu,_theClusters);
138
139 _ChemPotentialMu = theMultip->CalcChemicalPotentialMu();
140 _MeanMultiplicity = theMultip->GetMeanMultiplicity();
141
142 delete theMultip;
143
144 return;
145
146}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cerr
G4bool Brent(Function &theFunction)
void SetIntervalLimits(const G4double Limit1, const G4double Limit2)
G4double GetRoot(void) const
Definition: G4Solver.hh:77
G4double GetMeanMultiplicity(void) const
static G4double Getr0()
static G4double GetGamma0()
static G4double GetKappaCoulomb()