Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4HEAntiXiZeroInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
29// G4 Process: Gheisha High Energy Collision model.
30// This includes the high energy cascading model, the two-body-resonance model
31// and the low energy two-body model. Not included are the low energy stuff
32// like nuclear reactions, nuclear fission without any cascading and all
33// processes for particles at rest.
34// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
35// H. Fesefeldt, RWTH-Aachen, 23-October-1996
36
38#include "globals.hh"
39#include "G4ios.hh"
41
42void G4HEAntiXiZeroInelastic::ModelDescription(std::ostream& outFile) const
43{
44 outFile << "G4HEAntiXiZeroInelastic is one of the High Energy\n"
45 << "Parameterized (HEP) models used to implement inelastic\n"
46 << "anti-Xi0 scattering from nuclei. It is a re-engineered\n"
47 << "version of the GHEISHA code of H. Fesefeldt. It divides the\n"
48 << "initial collision products into backward- and forward-going\n"
49 << "clusters which are then decayed into final state hadrons.\n"
50 << "The model does not conserve energy on an event-by-event\n"
51 << "basis. It may be applied to anti-Xi0 with initial energies\n"
52 << "above 20 GeV.\n";
53}
54
55
58 G4Nucleus& targetNucleus)
59{
60 G4HEVector* pv = new G4HEVector[MAXPART];
61 const G4HadProjectile* aParticle = &aTrack;
62 const G4double A = targetNucleus.GetA_asInt();
63 const G4double Z = targetNucleus.GetZ_asInt();
64 G4HEVector incidentParticle(aParticle);
65
66 G4double atomicNumber = Z;
67 G4double atomicWeight = A;
68
69 G4int incidentCode = incidentParticle.getCode();
70 G4double incidentMass = incidentParticle.getMass();
71 G4double incidentTotalEnergy = incidentParticle.getEnergy();
72
73 // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
74 // DHW 19 May 2011: variable set but not used
75
76 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
77
78 if (incidentKineticEnergy < 1.)
79 G4cout << "GHEAntiXiZeroInelastic: incident energy < 1 GeV" << G4endl;
80
81 if (verboseLevel > 1) {
82 G4cout << "G4HEAntiXiZeroInelastic::ApplyYourself" << G4endl;
83 G4cout << "incident particle " << incidentParticle.getName()
84 << "mass " << incidentMass
85 << "kinetic energy " << incidentKineticEnergy
86 << G4endl;
87 G4cout << "target material with (A,Z) = ("
88 << atomicWeight << "," << atomicNumber << ")" << G4endl;
89 }
90
91 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
92 atomicWeight, atomicNumber);
93 if (verboseLevel > 1)
94 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
95
96 incidentKineticEnergy -= inelasticity;
97
98 G4double excitationEnergyGNP = 0.;
99 G4double excitationEnergyDTA = 0.;
100
101 G4double excitation = NuclearExcitation(incidentKineticEnergy,
102 atomicWeight, atomicNumber,
103 excitationEnergyGNP,
104 excitationEnergyDTA);
105 if (verboseLevel > 1)
106 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
107 << excitationEnergyDTA << G4endl;
108
109 incidentKineticEnergy -= excitation;
110 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
111 // incidentTotalMomentum = std::sqrt((incidentTotalEnergy-incidentMass)
112 // *(incidentTotalEnergy+incidentMass));
113 // DHW 19 May 2011: variable set but not used
114
115 G4HEVector targetParticle;
116 if (G4UniformRand() < atomicNumber/atomicWeight) {
117 targetParticle.setDefinition("Proton");
118 } else {
119 targetParticle.setDefinition("Neutron");
120 }
121
122 G4double targetMass = targetParticle.getMass();
123 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
124 + targetMass*targetMass
125 + 2.0*targetMass*incidentTotalEnergy);
126 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
127
128 G4bool inElastic = true;
129 vecLength = 0;
130
131 if (verboseLevel > 1)
132 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
133 << incidentCode << G4endl;
134
135 G4bool successful = false;
136
137 FirstIntInCasAntiXiZero(inElastic, availableEnergy, pv, vecLength,
138 incidentParticle, targetParticle, atomicWeight);
139
140 if (verboseLevel > 1)
141 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
142
143 if ((vecLength > 0) && (availableEnergy > 1.))
144 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
145 pv, vecLength,
146 incidentParticle, targetParticle);
147
148 HighEnergyCascading(successful, pv, vecLength,
149 excitationEnergyGNP, excitationEnergyDTA,
150 incidentParticle, targetParticle,
151 atomicWeight, atomicNumber);
152 if (!successful)
154 excitationEnergyGNP, excitationEnergyDTA,
155 incidentParticle, targetParticle,
156 atomicWeight, atomicNumber);
157 if (!successful)
158 MediumEnergyCascading(successful, pv, vecLength,
159 excitationEnergyGNP, excitationEnergyDTA,
160 incidentParticle, targetParticle,
161 atomicWeight, atomicNumber);
162
163 if (!successful)
165 excitationEnergyGNP, excitationEnergyDTA,
166 incidentParticle, targetParticle,
167 atomicWeight, atomicNumber);
168 if (!successful)
169 QuasiElasticScattering(successful, pv, vecLength,
170 excitationEnergyGNP, excitationEnergyDTA,
171 incidentParticle, targetParticle,
172 atomicWeight, atomicNumber);
173 if (!successful)
174 ElasticScattering(successful, pv, vecLength,
175 incidentParticle,
176 atomicWeight, atomicNumber);
177 if (!successful)
178 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
179 << G4endl;
180
182 delete [] pv;
184 return &theParticleChange;
185}
186
187
188void
190 const G4double availableEnergy,
191 G4HEVector pv[],
192 G4int& vecLen,
193 const G4HEVector& incidentParticle,
194 const G4HEVector& targetParticle,
195 const G4double atomicWeight)
196
197// AntiXi0 undergoes interaction with nucleon within a nucleus.
198// As in Geant3, we think that this routine has absolutely no influence
199// on the whole performance of the program. Take AntiLambda instaed.
200// ( decay Xi0 -> L Pi > 99 % )
201{
202 static const G4double expxu = 82.; // upper bound for arg. of exp
203 static const G4double expxl = -expxu; // lower bound for arg. of exp
204
205 static const G4double protb = 0.7;
206 static const G4double neutb = 0.7;
207 static const G4double c = 1.25;
208
209 static const G4int numMul = 1200;
210 static const G4int numMulAn = 400;
211 static const G4int numSec = 60;
212
213 G4int protonCode = Proton.getCode();
214
215 G4int targetCode = targetParticle.getCode();
216 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
217
218 static G4bool first = true;
219 static G4double protmul[numMul], protnorm[numSec]; // proton constants
220 static G4double protmulAn[numMulAn],protnormAn[numSec];
221 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
222 static G4double neutmulAn[numMulAn],neutnormAn[numSec];
223
224 // misc. local variables
225 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
226
227 G4int i, counter, nt, npos, nneg, nzero;
228
229 if( first )
230 { // compute normalization constants, this will only be done once
231 first = false;
232 for( i=0; i<numMul ; i++ ) protmul[i] = 0.0;
233 for( i=0; i<numSec ; i++ ) protnorm[i] = 0.0;
234 counter = -1;
235 for( npos=0; npos<(numSec/3); npos++ )
236 {
237 for( nneg=std::max(0,npos-2); nneg<=(npos+1); nneg++ )
238 {
239 for( nzero=0; nzero<numSec/3; nzero++ )
240 {
241 if( ++counter < numMul )
242 {
243 nt = npos+nneg+nzero;
244 if( (nt>0) && (nt<=numSec) )
245 {
246 protmul[counter] = pmltpc(npos,nneg,nzero,nt,protb,c);
247 protnorm[nt-1] += protmul[counter];
248 }
249 }
250 }
251 }
252 }
253 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
254 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
255 counter = -1;
256 for( npos=0; npos<numSec/3; npos++ )
257 {
258 for( nneg=std::max(0,npos-1); nneg<=(npos+2); nneg++ )
259 {
260 for( nzero=0; nzero<numSec/3; nzero++ )
261 {
262 if( ++counter < numMul )
263 {
264 nt = npos+nneg+nzero;
265 if( (nt>0) && (nt<=numSec) )
266 {
267 neutmul[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
268 neutnorm[nt-1] += neutmul[counter];
269 }
270 }
271 }
272 }
273 }
274 for( i=0; i<numSec; i++ )
275 {
276 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
277 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
278 }
279 // annihilation
280 for( i=0; i<numMulAn ; i++ ) protmulAn[i] = 0.0;
281 for( i=0; i<numSec ; i++ ) protnormAn[i] = 0.0;
282 counter = -1;
283 for( npos=1; npos<(numSec/3); npos++ )
284 {
285 nneg = std::max(0,npos-1);
286 for( nzero=0; nzero<numSec/3; nzero++ )
287 {
288 if( ++counter < numMulAn )
289 {
290 nt = npos+nneg+nzero;
291 if( (nt>1) && (nt<=numSec) )
292 {
293 protmulAn[counter] = pmltpc(npos,nneg,nzero,nt,protb,c);
294 protnormAn[nt-1] += protmulAn[counter];
295 }
296 }
297 }
298 }
299 for( i=0; i<numMulAn; i++ ) neutmulAn[i] = 0.0;
300 for( i=0; i<numSec; i++ ) neutnormAn[i] = 0.0;
301 counter = -1;
302 for( npos=0; npos<numSec/3; npos++ )
303 {
304 nneg = npos;
305 for( nzero=0; nzero<numSec/3; nzero++ )
306 {
307 if( ++counter < numMulAn )
308 {
309 nt = npos+nneg+nzero;
310 if( (nt>1) && (nt<=numSec) )
311 {
312 neutmulAn[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
313 neutnormAn[nt-1] += neutmulAn[counter];
314 }
315 }
316 }
317 }
318 for( i=0; i<numSec; i++ )
319 {
320 if( protnormAn[i] > 0.0 )protnormAn[i] = 1.0/protnormAn[i];
321 if( neutnormAn[i] > 0.0 )neutnormAn[i] = 1.0/neutnormAn[i];
322 }
323 } // end of initialization
324
325
326 // initialize the first two places
327 // the same as beam and target
328 pv[0] = incidentParticle;
329 pv[1] = targetParticle;
330 vecLen = 2;
331
332 if( !inElastic )
333 { // some two-body reactions
334 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
335
336 G4int iplab = std::min(9, G4int( incidentTotalMomentum*2.5 ));
337 if( G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
338 {
339 G4double ran = G4UniformRand();
340
341 if ( targetCode == protonCode)
342 {
343 if(ran < 0.2)
344 {
345 pv[0] = AntiSigmaZero;
346 }
347 else if (ran < 0.4)
348 {
349 pv[0] = AntiSigmaMinus;
350 pv[1] = Neutron;
351 }
352 else if (ran < 0.6)
353 {
354 pv[0] = Proton;
355 pv[1] = AntiLambda;
356 }
357 else if (ran < 0.8)
358 {
359 pv[0] = Proton;
360 pv[1] = AntiSigmaZero;
361 }
362 else
363 {
364 pv[0] = Neutron;
365 pv[1] = AntiSigmaMinus;
366 }
367 }
368 else
369 {
370 if (ran < 0.2)
371 {
372 pv[0] = AntiSigmaZero;
373 }
374 else if (ran < 0.4)
375 {
376 pv[0] = AntiSigmaPlus;
377 pv[1] = Proton;
378 }
379 else if (ran < 0.6)
380 {
381 pv[0] = Neutron;
382 pv[1] = AntiLambda;
383 }
384 else if (ran < 0.8)
385 {
386 pv[0] = Neutron;
387 pv[1] = AntiSigmaZero;
388 }
389 else
390 {
391 pv[0] = Proton;
392 pv[1] = AntiSigmaPlus;
393 }
394 }
395 }
396 return;
397 }
398 else if (availableEnergy <= PionPlus.getMass())
399 return;
400
401 // inelastic scattering
402
403 npos = 0; nneg = 0; nzero = 0;
404 G4double anhl[] = {1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.97, 0.88,
405 0.85, 0.81, 0.75, 0.64, 0.64, 0.55, 0.55, 0.45, 0.47, 0.40,
406 0.39, 0.36, 0.33, 0.10, 0.01};
407 G4int iplab = G4int( incidentTotalMomentum*10.);
408 if ( iplab > 9) iplab = 10 + G4int( (incidentTotalMomentum -1.)*5. );
409 if ( iplab > 14) iplab = 15 + G4int( incidentTotalMomentum -2. );
410 if ( iplab > 22) iplab = 23 + G4int( (incidentTotalMomentum -10.)/10.);
411 iplab = std::min(24, iplab);
412
413 if ( G4UniformRand() > anhl[iplab] )
414 { // non- annihilation channels
415
416 // number of total particles vs. centre of mass Energy - 2*proton mass
417
418 G4double aleab = std::log(availableEnergy);
419 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
420 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
421
422 // normalization constant for kno-distribution.
423 // calculate first the sum of all constants, check for numerical problems.
424 G4double test, dum, anpn = 0.0;
425
426 for (nt=1; nt<=numSec; nt++) {
427 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
428 dum = pi*nt/(2.0*n*n);
429 if (std::fabs(dum) < 1.0) {
430 if( test >= 1.0e-10 )anpn += dum*test;
431 } else {
432 anpn += dum*test;
433 }
434 }
435
436 G4double ran = G4UniformRand();
437 G4double excs = 0.0;
438 if( targetCode == protonCode )
439 {
440 counter = -1;
441 for( npos=0; npos<numSec/3; npos++ )
442 {
443 for( nneg=std::max(0,npos-2); nneg<=(npos+1); nneg++ )
444 {
445 for( nzero=0; nzero<numSec/3; nzero++ )
446 {
447 if( ++counter < numMul )
448 {
449 nt = npos+nneg+nzero;
450 if ( (nt>0) && (nt<=numSec) ) {
451 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
452 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
453 if (std::fabs(dum) < 1.0) {
454 if( test >= 1.0e-10 )excs += dum*test;
455 } else {
456 excs += dum*test;
457 }
458
459 if (ran < excs) goto outOfLoop; //----------------------->
460 }
461 }
462 }
463 }
464 }
465
466 // 3 previous loops continued to the end
467 inElastic = false; // quasi-elastic scattering
468 return;
469 }
470 else
471 { // target must be a neutron
472 counter = -1;
473 for( npos=0; npos<numSec/3; npos++ )
474 {
475 for( nneg=std::max(0,npos-1); nneg<=(npos+2); nneg++ )
476 {
477 for( nzero=0; nzero<numSec/3; nzero++ )
478 {
479 if( ++counter < numMul )
480 {
481 nt = npos+nneg+nzero;
482 if ( (nt>0) && (nt<=numSec) ) {
483 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
484 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
485 if (std::fabs(dum) < 1.0) {
486 if( test >= 1.0e-10 )excs += dum*test;
487 } else {
488 excs += dum*test;
489 }
490
491 if (ran < excs) goto outOfLoop; // -------------------------->
492 }
493 }
494 }
495 }
496 }
497 // 3 previous loops continued to the end
498 inElastic = false; // quasi-elastic scattering.
499 return;
500 }
501
502 outOfLoop: // <------------------------------------------------------------------------
503
504 ran = G4UniformRand();
505
506 if( targetCode == protonCode)
507 {
508 if( npos == nneg)
509 {
510 if (ran < 0.40)
511 {
512 }
513 else if (ran < 0.8)
514 {
515 pv[0] = AntiSigmaZero;
516 }
517 else
518 {
519 pv[0] = AntiSigmaMinus;
520 pv[1] = Neutron;
521 }
522 }
523 else if (npos == (nneg+1))
524 {
525 if( ran < 0.25)
526 {
527 pv[1] = Neutron;
528 }
529 else if (ran < 0.5)
530 {
531 pv[0] = AntiSigmaZero;
532 pv[1] = Neutron;
533 }
534 else
535 {
536 pv[0] = AntiSigmaPlus;
537 }
538 }
539 else if (npos == (nneg-1))
540 {
541 pv[0] = AntiSigmaMinus;
542 }
543 else
544 {
545 pv[0] = AntiSigmaPlus;
546 pv[1] = Neutron;
547 }
548 }
549 else
550 {
551 if( npos == nneg)
552 {
553 if (ran < 0.4)
554 {
555 }
556 else if(ran < 0.8)
557 {
558 pv[0] = AntiSigmaZero;
559 }
560 else
561 {
562 pv[0] = AntiSigmaPlus;
563 pv[1] = Proton;
564 }
565 }
566 else if ( npos == (nneg-1))
567 {
568 if (ran < 0.5)
569 {
570 pv[0] = AntiSigmaMinus;
571 }
572 else if (ran < 0.75)
573 {
574 pv[1] = Proton;
575 }
576 else
577 {
578 pv[0] = AntiSigmaZero;
579 pv[1] = Proton;
580 }
581 }
582 else if (npos == (nneg+1))
583 {
584 pv[0] = AntiSigmaPlus;
585 }
586 else
587 {
588 pv[0] = AntiSigmaMinus;
589 pv[1] = Proton;
590 }
591 }
592
593 }
594 else // annihilation
595 {
596 if ( availableEnergy > 2. * PionPlus.getMass() )
597 {
598
599 G4double aleab = std::log(availableEnergy);
600 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
601 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
602
603 // normalization constant for kno-distribution.
604 // calculate first the sum of all constants, check for numerical problems.
605 G4double test, dum, anpn = 0.0;
606
607 for (nt=2; nt<=numSec; nt++) {
608 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
609 dum = pi*nt/(2.0*n*n);
610 if (std::fabs(dum) < 1.0) {
611 if( test >= 1.0e-10 )anpn += dum*test;
612 } else {
613 anpn += dum*test;
614 }
615 }
616
617 G4double ran = G4UniformRand();
618 G4double excs = 0.0;
619 if( targetCode == protonCode )
620 {
621 counter = -1;
622 for( npos=1; npos<numSec/3; npos++ )
623 {
624 nneg = npos-1;
625 for( nzero=0; nzero<numSec/3; nzero++ )
626 {
627 if( ++counter < numMulAn )
628 {
629 nt = npos+nneg+nzero;
630 if ( (nt>1) && (nt<=numSec) ) {
631 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
632 dum = (pi/anpn)*nt*protmulAn[counter]*protnormAn[nt-1]/(2.0*n*n);
633 if (std::fabs(dum) < 1.0) {
634 if( test >= 1.0e-10 )excs += dum*test;
635 } else {
636 excs += dum*test;
637 }
638
639 if (ran < excs) goto outOfLoopAn; //----------------------->
640 }
641 }
642 }
643 }
644 // 3 previous loops continued to the end
645 inElastic = false; // quasi-elastic scattering
646 return;
647 }
648 else
649 { // target must be a neutron
650 counter = -1;
651 for( npos=0; npos<numSec/3; npos++ )
652 {
653 nneg = npos;
654 for( nzero=0; nzero<numSec/3; nzero++ )
655 {
656 if( ++counter < numMulAn )
657 {
658 nt = npos+nneg+nzero;
659 if ( (nt>1) && (nt<=numSec) ) {
660 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
661 dum = (pi/anpn)*nt*neutmulAn[counter]*neutnormAn[nt-1]/(2.0*n*n);
662 if (std::fabs(dum) < 1.0) {
663 if( test >= 1.0e-10 )excs += dum*test;
664 } else {
665 excs += dum*test;
666 }
667 if (ran < excs) goto outOfLoopAn; // -------------------------->
668 }
669 }
670 }
671 }
672 inElastic = false; // quasi-elastic scattering.
673 return;
674 }
675 outOfLoopAn: // <------------------------------------------------------------------
676 vecLen = 0;
677 }
678 }
679
680 nt = npos + nneg + nzero;
681 while ( nt > 0)
682 {
683 G4double ran = G4UniformRand();
684 if ( ran < (G4double)npos/nt)
685 {
686 if( npos > 0 )
687 { pv[vecLen++] = PionPlus;
688 npos--;
689 }
690 }
691 else if ( ran < (G4double)(npos+nneg)/nt)
692 {
693 if( nneg > 0 )
694 {
695 pv[vecLen++] = PionMinus;
696 nneg--;
697 }
698 }
699 else
700 {
701 if( nzero > 0 )
702 {
703 pv[vecLen++] = PionZero;
704 nzero--;
705 }
706 }
707 nt = npos + nneg + nzero;
708 }
709 if (verboseLevel > 1)
710 {
711 G4cout << "Particles produced: " ;
712 G4cout << pv[0].getCode() << " " ;
713 G4cout << pv[1].getCode() << " " ;
714 for (i=2; i < vecLen; i++)
715 {
716 G4cout << pv[i].getCode() << " " ;
717 }
718 G4cout << G4endl;
719 }
720 return;
721 }
722
723
724
725
726
727
728
729
730
731
@ stopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
void FirstIntInCasAntiXiZero(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
virtual void ModelDescription(std::ostream &) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4HEVector PionPlus
G4HEVector AntiSigmaZero
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HEVector AntiSigmaPlus
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector Neutron
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
G4HEVector PionMinus
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector PionZero
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector AntiSigmaMinus
G4HEVector AntiLambda
G4HEVector Proton
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double getEnergy() const
Definition: G4HEVector.cc:313
G4double getMass() const
Definition: G4HEVector.cc:361
G4int getCode() const
Definition: G4HEVector.cc:426
G4double getTotalMomentum() const
Definition: G4HEVector.cc:166
G4String getName() const
Definition: G4HEVector.cc:431
void setDefinition(G4String name)
Definition: G4HEVector.cc:812
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115