Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4E1Probability.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28//---------------------------------------------------------------------
29//
30// Geant4 class G4E1Probability
31//
32// by V. Lara (May 2003)
33//
34// Modifications:
35// 18.05.2010 V.Ivanchenko trying to speedup the most slow method
36// by usage of G4Pow, integer A and introduction of const members
37// 17.11.2010 V.Ivanchenko perform general cleanup and simplification
38// of integration method; low-limit of integration is defined
39// by gamma energy or is zero (was always zero before)
40//
41
42#include "G4E1Probability.hh"
43#include "Randomize.hh"
44#include "G4Pow.hh"
45#include "G4SystemOfUnits.hh"
46
47// Constructors and operators
48//
49
51{
52 G4double x = CLHEP::pi*CLHEP::hbarc;
53 normC = 1.0 / (x*x);
54 theLevelDensityParameter = 0.125/MeV;
55 fG4pow = G4Pow::GetInstance();
56}
57
59{}
60
61// Calculate the emission probability
62//
63
65 G4double gammaE)
66{
67
68 // Calculate the probability density here
69
70 // From nuclear fragment properties and the excitation energy, calculate
71 // the probability density for photon evaporation from U to U - gammaE
72 // (U = nucleus excitation energy, gammaE = total evaporated photon
73 // energy). Fragment = nuclear fragment BEFORE de-excitation
74
75 G4double theProb = 0.0;
76
77 G4int Afrag = frag.GetA_asInt();
78 G4double Uexcite = frag.GetExcitationEnergy();
79 G4double U = std::max(0.0,Uexcite-gammaE);
80
81 if(gammaE < 0.0) { return theProb; }
82
83 // Need a level density parameter.
84 // For now, just use the constant approximation (not reliable near magic
85 // nuclei).
86
87 G4double aLevelDensityParam = Afrag*theLevelDensityParameter;
88
89 // G4double levelDensBef = std::exp(2*std::sqrt(aLevelDensityParam*Uexcite));
90 // G4double levelDensAft = std::exp(2*std::sqrt(aLevelDensityParam*(Uexcite-gammaE)));
91 // VI reduce number of calls to exp
92 G4double levelDens =
93 std::exp(2*(std::sqrt(aLevelDensityParam*U)-std::sqrt(aLevelDensityParam*Uexcite)));
94 // Now form the probability density
95
96 // Define constants for the photoabsorption cross-section (the reverse
97 // process of our de-excitation)
98
99 G4double sigma0 = 2.5 * Afrag * millibarn; // millibarns
100
101 G4double Egdp = (40.3 / fG4pow->powZ(Afrag,0.2) )*MeV;
102 G4double GammaR = 0.30 * Egdp;
103
104 // CD
105 //cout<<" PROB TESTS "<<G4endl;
106 //cout<<" hbarc = "<<hbarc<<G4endl;
107 //cout<<" pi = "<<pi<<G4endl;
108 //cout<<" Uexcite, gammaE = "<<Uexcite<<" "<<gammaE<<G4endl;
109 //cout<<" Uexcite, gammaE = "<<Uexcite*MeV<<" "<<gammaE*MeV<<G4endl;
110 //cout<<" lev density param = "<<aLevelDensityParam<<G4endl;
111 //cout<<" level densities = "<<levelDensBef<<" "<<levelDensAft<<G4endl;
112 //cout<<" sigma0 = "<<sigma0<<G4endl;
113 //cout<<" Egdp, GammaR = "<<Egdp<<" "<<GammaR<<G4endl;
114 //cout<<" normC = "<<normC<<G4endl;
115
116 // VI implementation 18.05.2010
117 G4double gammaE2 = gammaE*gammaE;
118 G4double gammaR2 = gammaE2*GammaR*GammaR;
119 G4double egdp2 = gammaE2 - Egdp*Egdp;
120 G4double sigmaAbs = sigma0*gammaR2/(egdp2*egdp2 + gammaR2);
121 theProb = normC * sigmaAbs * gammaE2 * levelDens;
122
123 // old implementation
124 // G4double numerator = sigma0 * gammaE*gammaE * GammaR*GammaR;
125 // G4double denominator = (gammaE*gammaE - Egdp*Egdp)*
126 // (gammaE*gammaE - Egdp*Egdp) + GammaR*GammaR*gammaE*gammaE;
127
128 //G4double sigmaAbs = numerator/denominator;
129 //theProb = normC * sigmaAbs * gammaE2 * levelDensAft/levelDensBef;
130
131 // CD
132 //cout<<" sigmaAbs = "<<sigmaAbs<<G4endl;
133 //cout<<" Probability = "<<theProb<<G4endl;
134
135 return theProb;
136
137}
138
140 G4double gammaE)
141{
142 // From nuclear fragment properties and the excitation energy, calculate
143 // the probability for photon evaporation down to last ground level.
144 // fragment = nuclear fragment BEFORE de-excitation
145
146 G4double upperLim = gammaE;
147 G4double lowerLim = 0.0;
148
149 //G4cout << "G4E1Probability::EmissionProbability: Emin= " << lowerLim
150 // << " Emax= " << upperLim << G4endl;
151 if( upperLim - lowerLim <= CLHEP::keV ) { return 0.0; }
152
153 // Need to integrate EmissionProbDensity from lowerLim to upperLim
154 // and multiply by factor 3 (?!)
155
156 G4double integ = 3.0 * EmissionIntegration(frag,lowerLim,upperLim);
157
158 return integ;
159
160}
161
162G4double G4E1Probability::EmissionIntegration(const G4Fragment& frag,
163 G4double lowLim, G4double upLim)
164
165{
166 // Simple integration
167 // VI replace by direct integration over 100 point
168
169 const G4int numIters = 100;
170 G4double Step = (upLim-lowLim)/G4double(numIters);
171
172 G4double res = 0.0;
173 G4double x = lowLim - 0.5*Step;
174
175 for(G4int i = 0; i < numIters; ++i) {
176 x += Step;
177 res += EmissionProbDensity(frag, x);
178 }
179
180 if(res > 0.0) { res /= G4double(numIters); }
181 else { res = 0.0; }
182
183 return res;
184
185}
186
187
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4double EmissionProbDensity(const G4Fragment &frag, G4double ePhoton)
G4double EmissionProbability(const G4Fragment &frag, G4double excite)
virtual ~G4E1Probability()
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:235
G4int GetA_asInt() const
Definition: G4Fragment.hh:218
static G4Pow * GetInstance()
Definition: G4Pow.cc:50
G4double powZ(G4int Z, G4double y)
Definition: G4Pow.hh:180