Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4XTRRegularRadModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
28#include <complex>
29
32#include "Randomize.hh"
33
34#include "G4Gamma.hh"
35using namespace std;
36
37////////////////////////////////////////////////////////////////////////////
38//
39// Constructor, destructor
40
42 G4Material* foilMat,G4Material* gasMat,
43 G4double a, G4double b, G4int n,
44 const G4String& processName) :
45 G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
46{
47 G4cout<<" XTR Regular discrete radiator model is called"<<G4endl ;
48
49 fExitFlux = true;
50
51 // Build energy and angular integral spectra of X-ray TR photons from
52 // a radiator
53
54 // BuildTable() ;
55}
56
57///////////////////////////////////////////////////////////////////////////
58
60{
61 ;
62}
63
64///////////////////////////////////////////////////////////////////////////
65//
66//
67
69{
70 G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC, theta2, theta2k;
71 G4double aMa, bMb ,sigma, dump;
72 G4int k, kMax, kMin;
73
75 bMb = fGasThick*GetGasLinearPhotoAbs(energy);
76 sigma = 0.5*(aMa + bMb);
77 dump = std::exp(-fPlateNumber*sigma);
78 if(verboseLevel > 2) G4cout<<" dump = "<<dump<<G4endl;
79 cofPHC = 4*pi*hbarc;
80 tmp = (fSigma1 - fSigma2)/cofPHC/energy;
81 cof1 = fPlateThick*tmp;
82 cof2 = fGasThick*tmp;
83
84 cofMin = energy*(fPlateThick + fGasThick)/fGamma/fGamma;
85 cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
86 cofMin /= cofPHC;
87
88 theta2 = cofPHC/(energy*(fPlateThick + fGasThick));
89
90 // if (fGamma < 1200) kMin = G4int(cofMin); // 1200 ?
91 // else kMin = 1;
92
93
94 kMin = G4int(cofMin);
95 if (cofMin > kMin) kMin++;
96
97 // tmp = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
98 // tmp /= cofPHC;
99 // kMax = G4int(tmp);
100 // if(kMax < 0) kMax = 0;
101 // kMax += kMin;
102
103
104 kMax = kMin + 49; // 19; // kMin + G4int(tmp);
105
106 // tmp /= fGamma;
107 // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
108
109 if(verboseLevel > 2)
110 {
111 G4cout<<cof1<<" "<<cof2<<" "<<cofMin<<G4endl;
112 G4cout<<"kMin = "<<kMin<<"; kMax = "<<kMax<<G4endl;
113 }
114 for( k = kMin; k <= kMax; k++ )
115 {
116 tmp = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
117 result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
118 // tmp = std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
119 if( k == kMin && kMin == G4int(cofMin) )
120 {
121 sum += 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
122 }
123 else
124 {
125 sum += std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
126 }
127 theta2k = std::sqrt(theta2*std::abs(k-cofMin));
128
129 if(verboseLevel > 2)
130 {
131 // G4cout<<"k = "<<k<<"; sqrt(theta2k) = "<<theta2k<<"; tmp = "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
132 // <<"; sum = "<<sum<<G4endl;
133 G4cout<<k<<" "<<theta2k<<" "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
134 <<" "<<sum<<G4endl;
135 }
136 }
137 result = 2*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
138 // result *= ( 1 - std::exp(-0.5*fPlateNumber*sigma) )/( 1 - std::exp(-0.5*sigma) );
139 // fPlateNumber;
140 result *= dump*( -1 + dump + 2*fPlateNumber );
141 /*
142 fEnergy = energy;
143 // G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
144 G4Integrator<G4TransparentRegXTRadiator,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
145
146 tmp = integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
147 0.0,0.3*fMaxThetaTR) +
148 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
149 0.3*fMaxThetaTR,0.6*fMaxThetaTR) +
150 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
151 0.6*fMaxThetaTR,fMaxThetaTR) ;
152 result += tmp;
153 */
154 return result;
155}
156
157
158
159///////////////////////////////////////////////////////////////////////////
160//
161// Approximation for radiator interference factor for the case of
162// fully Regular radiator. The plate and gas gap thicknesses are fixed .
163// The mean values of the plate and gas gap thicknesses
164// are supposed to be about XTR formation zones but much less than
165// mean absorption length of XTR photons in coresponding material.
166
169 G4double gamma, G4double varAngle )
170{
171 G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, I2 ;
172
173 aZa = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle) ;
174 bZb = fGasThick/GetGasFormationZone(energy,gamma,varAngle) ;
175
176 aMa = fPlateThick*GetPlateLinearPhotoAbs(energy) ;
177 bMb = fGasThick*GetGasLinearPhotoAbs(energy) ;
178
179 Qa = std::exp(-aMa) ;
180 Qb = std::exp(-bMb) ;
181 Q = Qa*Qb ;
182
183 // G4complex Ca(1.0+0.5*fPlateThick*Ma,fPlateThick/Za) ;
184 // G4complex Cb(1.0+0.5*fGasThick*Mb,fGasThick/Zb) ;
185
186 G4complex Ha( std::exp(-0.5*aMa)*std::cos(aZa),
187 -std::exp(-0.5*aMa)*std::sin(aZa) ) ;
188
189 G4complex Hb( std::exp(-0.5*bMb)*std::cos(bZb),
190 -std::exp(-0.5*bMb)*std::sin(bZb) ) ;
191
192 G4complex H = Ha*Hb ;
193
194 G4complex Hs = std::conj(H) ;
195
196 // G4complex F1 = ( 0.5*(1+Qa)*(1+H) - Ha - Qa*Hb )/(1-H) ;
197
198 G4complex F2 = (1.0-Ha)*(Qa-Ha)*Hb*(1.0-Hs)*(Q-Hs) ;
199
200 F2 *= std::pow(Q,G4double(fPlateNumber)) - std::pow(H,fPlateNumber) ;
201
202 result = ( 1 - std::pow(Q,G4double(fPlateNumber)) )/( 1 - Q ) ;
203
204 result *= (1 - Qa)*(1 + Qa - 2*std::sqrt(Qa)*std::cos(aZa)) ;
205
206 result /= (1 - std::sqrt(Q))*(1 - std::sqrt(Q)) +
207 4*std::sqrt(Q)*std::sin(0.5*(aZa+bZb))*std::sin(0.5*(aZa+bZb)) ;
208
209 I2 = 1.; // 2.0*std::real(F2) ;
210
211 I2 /= (1 - std::sqrt(Q))*(1 - std::sqrt(Q)) +
212 4*std::sqrt(Q)*std::sin(0.5*(aZa+bZb))*std::sin(0.5*(aZa+bZb)) ;
213
214 I2 /= Q*( (std::sqrt(Q)-std::cos(aZa+bZb))*(std::sqrt(Q)-std::cos(aZa+bZb)) +
215 std::sin(aZa+bZb)*std::sin(aZa+bZb) ) ;
216
217 G4complex stack = 2.*I2*F2;
218 stack += result;
219 stack *= OneInterfaceXTRdEdx(energy,gamma,varAngle);
220
221 // result += I2 ;
222 result = std::real(stack);
223
224 return result ;
225}
226
227
228//
229//
230////////////////////////////////////////////////////////////////////////////
231
232
233
234
235
236
237
238
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
std::complex< G4double > G4complex
Definition: G4Types.hh:69
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
G4int verboseLevel
Definition: G4VProcess.hh:368
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasFormationZone(G4double, G4double, G4double)
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double GetGasLinearPhotoAbs(G4double)
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle)
G4XTRRegularRadModel(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRegularModel")
G4double SpectralXTRdEdx(G4double energy)