36#ifndef G4ElectroNuclearReaction_h
37#define G4ElectroNuclearReaction_h 1
86 delete theStringDecay;
87 delete theElectronData;
96 char* dirName = getenv(
"G4PhysListDocDir");
98 std::ofstream outFile;
102 outFile.open(pathName);
103 outFile <<
"<html>\n";
104 outFile <<
"<head>\n";
106 outFile <<
"<title>Description of CHIPS ElectroNuclear Model</title>\n";
107 outFile <<
"</head>\n";
108 outFile <<
"<body>\n";
110 outFile <<
"G4ElectroNuclearReaction handles the inelastic scattering\n"
111 <<
"of e- and e+ from nuclei using the Chiral Invariant Phase\n"
112 <<
"Space (CHIPS) model of M. Kossov. This model uses the\n"
113 <<
"Equivalent Photon Approximation in which the incoming\n"
114 <<
"electron generates a virtual photon at the electromagnetic\n"
115 <<
"vertex, and the virtual photon is converted to a real photon\n"
116 <<
"before it interacts with the nucleus. The real photon\n"
117 <<
"interacts with the hadrons in the target by producing\n"
118 <<
"quasmons (or generalized excited hadrons) which then decay\n"
119 <<
"into final state hadrons. This model is valid for e- and\n"
120 <<
"e+ of all incident energies.\n";
122 outFile <<
"</body>\n";
123 outFile <<
"</html>\n";
156 "G4ElectroNuclearReaction::ApplyYourself called for neither electron or positron");
160 for(
size_t ii=0; ii<aTab->size(); ++ii)
if ( std::abs((*aTab)[ii]->GetZ()-aZ) < .1)
162 anElement = (*aTab)[ii];
167 G4cerr<<
"***G4ElectroNuclearReaction::ApplyYourself: element with Z="
184 if( theElectronKinEnergy < photonEnergy )
186 G4cout<<
"G4ElectroNuclearReaction::ApplyYourself: photonEnergy is very high"<<
G4endl;
187 G4cout<<
">>> If this condition persists, please contact Geant4 group"<<
G4endl;
195 G4double W=photonEnergy-photonQ2/dM;
196 if(getenv(
"debug_G4ElectroNuclearReaction") )
198 G4cout <<
"G4ElectroNuclearReaction: Equivalent Energy = "<<W<<
G4endl;
216 delete theDynamicPhoton;
228 G4double iniE=theElectronKinEnergy+me;
232 G4double iniP=std::sqrt(iniE*iniE-me2);
233 G4double finP=std::sqrt(finE*finE-me2);
234 G4double cost=(EEm+EEm-photonQ2)/iniP/finP;
235 if(cost> 1.) cost= 1.;
236 if(cost<-1.) cost=-1.;
241 G4double sint=std::sqrt(1.-cost*cost);
254 if (photonEnergy < 3*CLHEP::GeV)
255 result = theLEModel.
ApplyYourself(localTrack, aTargetNucleus, &theResult);
std::vector< G4Element * > G4ElementTable
G4ThreeVector G4ParticleMomentum
G4DLLIMPORT std::ostream G4cerr
G4DLLIMPORT std::ostream G4cout
Hep3Vector orthogonal() const
Hep3Vector cross(const Hep3Vector &) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus, G4HadFinalState *aChange=0)
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
void SetKineticEnergy(G4double aEnergy)
G4double GetEquivalentPhotonQ2(G4double nu)
G4double GetEquivalentPhotonEnergy()
G4double GetVirtualFactor(G4double nu, G4double Q2)
G4ElectroNuclearReaction()
~G4ElectroNuclearReaction()
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
static G4Electron * ElectronDefinition()
static G4Electron * Electron()
static const G4ElementTable * GetElementTable()
static G4Gamma * GammaDefinition()
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondaries(const std::vector< G4HadSecondary > &addSecs)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4ParticleDefinition * GetDefinition() const
const G4LorentzVector & Get4Momentum() const
void SetMinEnergy(G4double anEnergy)
const G4String & GetModelName() const
void SetMaxEnergy(const G4double anEnergy)
static G4Neutron * Neutron()
G4double GetPDGMass() const
static G4Positron * PositronDefinition()
static G4Proton * Proton()
void SetTransport(G4VIntraNuclearTransportModel *const value)
void SetHighEnergyGenerator(G4VHighEnergyGenerator *const value)
G4HadFinalState * ApplyYourself(const G4HadProjectile &thePrimary, G4Nucleus &theNucleus)
G4double GetCrossSection(const G4DynamicParticle *, const G4Element *, const G4Material *mat=0)
void SetFragmentationModel(G4VStringFragmentation *aModel)