Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4GaussLegendreQ.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29
30#include "G4GaussLegendreQ.hh"
32
34 : G4VGaussianQuadrature(pFunction)
35{
36}
37
38// --------------------------------------------------------------------------
39//
40// Constructor for GaussLegendre quadrature method. The value nLegendre sets
41// the accuracy required, i.e the number of points where the function pFunction
42// will be evaluated during integration. The constructor creates the arrays for
43// abscissas and weights that are used in Gauss-Legendre quadrature method.
44// The values a and b are the limits of integration of the pFunction.
45// nLegendre MUST BE EVEN !!!
46
48 G4int nLegendre )
49 : G4VGaussianQuadrature(pFunction)
50{
51 const G4double tolerance = 1.6e-10 ;
52 G4int k = nLegendre ;
53 fNumber = (nLegendre + 1)/2 ;
54 if(2*fNumber != k)
55 {
56 G4Exception("G4GaussLegendreQ::G4GaussLegendreQ()", "InvalidCall",
57 FatalException, "Invalid nLegendre argument !") ;
58 }
59 G4double newton0=0.0, newton1=0.0,
60 temp1=0.0, temp2=0.0, temp3=0.0, temp=0.0 ;
61
63 fWeight = new G4double[fNumber] ;
64
65 for(G4int i=1;i<=fNumber;i++) // Loop over the desired roots
66 {
67 newton0 = std::cos(pi*(i - 0.25)/(k + 0.5)) ; // Initial root
68 do // approximation
69 { // loop of Newton's method
70 temp1 = 1.0 ;
71 temp2 = 0.0 ;
72 for(G4int j=1;j<=k;j++)
73 {
74 temp3 = temp2 ;
75 temp2 = temp1 ;
76 temp1 = ((2.0*j - 1.0)*newton0*temp2 - (j - 1.0)*temp3)/j ;
77 }
78 temp = k*(newton0*temp1 - temp2)/(newton0*newton0 - 1.0) ;
79 newton1 = newton0 ;
80 newton0 = newton1 - temp1/temp ; // Newton's method
81 }
82 while(std::fabs(newton0 - newton1) > tolerance) ;
83
84 fAbscissa[fNumber-i] = newton0 ;
85 fWeight[fNumber-i] = 2.0/((1.0 - newton0*newton0)*temp*temp) ;
86 }
87}
88
89// --------------------------------------------------------------------------
90//
91// Returns the integral of the function to be pointed by fFunction between a
92// and b, by 2*fNumber point Gauss-Legendre integration: the function is
93// evaluated exactly 2*fNumber times at interior points in the range of
94// integration. Since the weights and abscissas are, in this case, symmetric
95// around the midpoint of the range of integration, there are actually only
96// fNumber distinct values of each.
97
100{
101 G4double xMean = 0.5*(a + b),
102 xDiff = 0.5*(b - a),
103 integral = 0.0, dx = 0.0 ;
104 for(G4int i=0;i<fNumber;i++)
105 {
106 dx = xDiff*fAbscissa[i] ;
107 integral += fWeight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
108 }
109 return integral *= xDiff ;
110}
111
112// --------------------------------------------------------------------------
113//
114// Returns the integral of the function to be pointed by fFunction between a
115// and b, by ten point Gauss-Legendre integration: the function is evaluated
116// exactly ten times at interior points in the range of integration. Since the
117// weights and abscissas are, in this case, symmetric around the midpoint of
118// the range of integration, there are actually only five distinct values of
119// each.
120
123{
124 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916
125
126 static G4double abscissa[] = { 0.148874338981631, 0.433395394129247,
127 0.679409568299024, 0.865063366688985,
128 0.973906528517172 } ;
129
130 static G4double weight[] = { 0.295524224714753, 0.269266719309996,
131 0.219086362515982, 0.149451349150581,
132 0.066671344308688 } ;
133 G4double xMean = 0.5*(a + b),
134 xDiff = 0.5*(b - a),
135 integral = 0.0, dx = 0.0 ;
136 for(G4int i=0;i<5;i++)
137 {
138 dx = xDiff*abscissa[i] ;
139 integral += weight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
140 }
141 return integral *= xDiff ;
142}
143
144// -------------------------------------------------------------------------
145//
146// Returns the integral of the function to be pointed by fFunction between a
147// and b, by 96 point Gauss-Legendre integration: the function is evaluated
148// exactly ten times at interior points in the range of integration. Since the
149// weights and abscissas are, in this case, symmetric around the midpoint of
150// the range of integration, there are actually only five distinct values of
151// each.
152
155{
156 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919
157
158 static
159 G4double abscissa[] = {
160 0.016276744849602969579, 0.048812985136049731112,
161 0.081297495464425558994, 0.113695850110665920911,
162 0.145973714654896941989, 0.178096882367618602759, // 6
163
164 0.210031310460567203603, 0.241743156163840012328,
165 0.273198812591049141487, 0.304364944354496353024,
166 0.335208522892625422616, 0.365696861472313635031, // 12
167
168 0.395797649828908603285, 0.425478988407300545365,
169 0.454709422167743008636, 0.483457973920596359768,
170 0.511694177154667673586, 0.539388108324357436227, // 18
171
172 0.566510418561397168404, 0.593032364777572080684,
173 0.618925840125468570386, 0.644163403784967106798,
174 0.668718310043916153953, 0.692564536642171561344, // 24
175
176 0.715676812348967626225, 0.738030643744400132851,
177 0.759602341176647498703, 0.780369043867433217604,
178 0.800308744139140817229, 0.819400310737931675539, // 30
179
180 0.837623511228187121494, 0.854959033434601455463,
181 0.871388505909296502874, 0.886894517402420416057,
182 0.901460635315852341319, 0.915071423120898074206, // 36
183
184 0.927712456722308690965, 0.939370339752755216932,
185 0.950032717784437635756, 0.959688291448742539300,
186 0.968326828463264212174, 0.975939174585136466453, // 42
187
188 0.982517263563014677447, 0.988054126329623799481,
189 0.992543900323762624572, 0.995981842987209290650,
190 0.998364375863181677724, 0.999689503883230766828 // 48
191 } ;
192
193 static
194 G4double weight[] = {
195 0.032550614492363166242, 0.032516118713868835987,
196 0.032447163714064269364, 0.032343822568575928429,
197 0.032206204794030250669, 0.032034456231992663218, // 6
198
199 0.031828758894411006535, 0.031589330770727168558,
200 0.031316425596862355813, 0.031010332586313837423,
201 0.030671376123669149014, 0.030299915420827593794, // 12
202
203 0.029896344136328385984, 0.029461089958167905970,
204 0.028994614150555236543, 0.028497411065085385646,
205 0.027970007616848334440, 0.027412962726029242823, // 18
206
207 0.026826866725591762198, 0.026212340735672413913,
208 0.025570036005349361499, 0.024900633222483610288,
209 0.024204841792364691282, 0.023483399085926219842, // 24
210
211 0.022737069658329374001, 0.021966644438744349195,
212 0.021172939892191298988, 0.020356797154333324595,
213 0.019519081140145022410, 0.018660679627411467385, // 30
214
215 0.017782502316045260838, 0.016885479864245172450,
216 0.015970562902562291381, 0.015038721026994938006,
217 0.014090941772314860916, 0.013128229566961572637, // 36
218
219 0.012151604671088319635, 0.011162102099838498591,
220 0.010160770535008415758, 0.009148671230783386633,
221 0.008126876925698759217, 0.007096470791153865269, // 42
222
223 0.006058545504235961683, 0.005014202742927517693,
224 0.003964554338444686674, 0.002910731817934946408,
225 0.001853960788946921732, 0.000796792065552012429 // 48
226 } ;
227 G4double xMean = 0.5*(a + b),
228 xDiff = 0.5*(b - a),
229 integral = 0.0, dx = 0.0 ;
230 for(G4int i=0;i<48;i++)
231 {
232 dx = xDiff*abscissa[i] ;
233 integral += weight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
234 }
235 return integral *= xDiff ;
236}
G4double(* function)(G4double)
@ FatalException
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4double Integral(G4double a, G4double b) const
G4double QuickIntegral(G4double a, G4double b) const
G4GaussLegendreQ(function pFunction)
G4double AccurateIntegral(G4double a, G4double b) const
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41