Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4eeToHadronsModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// -------------------------------------------------------------------
29//
30// GEANT4 Class header file
31//
32//
33// File name: G4eeToHadronsModel
34//
35// Author: Vladimir Ivanchenko
36//
37// Creation date: 12.08.2003
38//
39// Modifications:
40// 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko)
41// 18-05-05 Use optimized interfaces (V.Ivantchenko)
42//
43//
44// -------------------------------------------------------------------
45//
46
47
48//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
49//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
50
51#include "G4eeToHadronsModel.hh"
52#include "Randomize.hh"
54#include "G4SystemOfUnits.hh"
55#include "G4Electron.hh"
56#include "G4Gamma.hh"
57#include "G4Positron.hh"
58#include "G4PionPlus.hh"
59#include "Randomize.hh"
60#include "G4Vee2hadrons.hh"
61#include "G4PhysicsVector.hh"
62#include "G4PhysicsLogVector.hh"
63
64//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
65
66using namespace std;
67
69 const G4String& nam)
70 : G4VEmModel(nam),
71 model(mod),
72 crossPerElectron(0),
73 crossBornPerElectron(0),
74 isInitialised(false),
75 nbins(100),
76 verbose(ver)
77{
78 theGamma = G4Gamma::Gamma();
79 highKinEnergy = HighEnergyLimit();
80 lowKinEnergy = LowEnergyLimit();
81 emin = lowKinEnergy;
82 emax = highKinEnergy;
83 peakKinEnergy = highKinEnergy;
84 epeak = emax;
85}
86
87//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
88
90{
91 delete model;
92 delete crossPerElectron;
93 delete crossBornPerElectron;
94}
95
96//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
97
99 const G4DataVector&)
100{
101 if(isInitialised) { return; }
102 isInitialised = true;
103
104 // Lab system
105 highKinEnergy = HighEnergyLimit();
106 lowKinEnergy = LowEnergyLimit();
107
108 // CM system
109 emin = model->LowEnergy();
110 emax = model->HighEnergy();
111
112 G4double emin0 =
113 2.0*electron_mass_c2*sqrt(1.0 + 0.5*lowKinEnergy/electron_mass_c2);
114 G4double emax0 =
115 2.0*electron_mass_c2*sqrt(1.0 + 0.5*highKinEnergy/electron_mass_c2);
116
117 // recompute low energy
118 if(emin0 > emax) {
119 emin0 = emax;
120 model->SetLowEnergy(emin0);
121 }
122 if(emin > emin0) {
123 emin0 = emin;
124 lowKinEnergy = 0.5*emin*emin/electron_mass_c2 - 2.0*electron_mass_c2;
125 SetLowEnergyLimit(lowKinEnergy);
126 }
127
128 // recompute high energy
129 if(emax < emax0) {
130 emax0 = emax;
131 highKinEnergy = 0.5*emax*emax/electron_mass_c2 - 2.0*electron_mass_c2;
132 SetHighEnergyLimit(highKinEnergy);
133 }
134
135 // peak energy
136 epeak = std::min(model->PeakEnergy(), emax);
137 peakKinEnergy = 0.5*epeak*epeak/electron_mass_c2 - 2.0*electron_mass_c2;
138
139 if(verbose>0) {
140 G4cout << "G4eeToHadronsModel::Initialise: " << G4endl;
141 G4cout << "LabSystem: emin(GeV)= " << lowKinEnergy/GeV
142 << " epeak(GeV)= " << peakKinEnergy/GeV
143 << " emax(GeV)= " << highKinEnergy/GeV
144 << G4endl;
145 G4cout << "SM System: emin(MeV)= " << emin/MeV
146 << " epeak(MeV)= " << epeak/MeV
147 << " emax(MeV)= " << emax/MeV
148 << G4endl;
149 }
150
151 if(lowKinEnergy < peakKinEnergy) {
152 crossBornPerElectron = model->PhysicsVector(emin, emax);
153 crossPerElectron = model->PhysicsVector(emin, emax);
154 nbins = crossPerElectron->GetVectorLength();
155 for(G4int i=0; i<nbins; i++) {
156 G4double e = crossPerElectron->GetLowEdgeEnergy(i);
157 G4double cs = model->ComputeCrossSection(e);
158 crossBornPerElectron->PutValue(i, cs);
159 }
160 ComputeCMCrossSectionPerElectron();
161 }
162 if(verbose>1) {
163 G4cout << "G4eeToHadronsModel: Cross secsions per electron"
164 << " nbins= " << nbins
165 << " emin(MeV)= " << emin/MeV
166 << " emax(MeV)= " << emax/MeV
167 << G4endl;
168 G4bool b;
169 for(G4int i=0; i<nbins; i++) {
170 G4double e = crossPerElectron->GetLowEdgeEnergy(i);
171 G4double s1 = crossPerElectron->GetValue(e, b);
172 G4double s2 = crossBornPerElectron->GetValue(e, b);
173 G4cout << "E(MeV)= " << e/MeV
174 << " cross(nb)= " << s1/nanobarn
175 << " crossBorn(nb)= " << s2/nanobarn
176 << G4endl;
177 }
178 }
179}
180
181//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
182
184 const G4Material* mat,
185 const G4ParticleDefinition* p,
186 G4double kineticEnergy,
188{
189 return mat->GetElectronDensity()*
190 ComputeCrossSectionPerElectron(p, kineticEnergy);
191}
192
193//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
194
196 const G4ParticleDefinition* p,
197 G4double kineticEnergy,
200{
201 return Z*ComputeCrossSectionPerElectron(p, kineticEnergy);
202}
203
204//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
205
208 G4double kineticEnergy,
210{
211 G4double cross = 0.0;
212 if(crossPerElectron) {
213 G4bool b;
214 G4double e = 2.0*electron_mass_c2*
215 sqrt(1.0 + 0.5*kineticEnergy/electron_mass_c2);
216 cross = crossPerElectron->GetValue(e, b);
217 }
218 // G4cout << "e= " << kineticEnergy << " cross= " << cross << G4endl;
219 return cross;
220}
221
222//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
223
224void G4eeToHadronsModel::SampleSecondaries(std::vector<G4DynamicParticle*>* newp,
226 const G4DynamicParticle* dParticle,
227 G4double,
228 G4double)
229{
230 if(crossPerElectron) {
231 G4double t = dParticle->GetKineticEnergy();
232 G4double e = 2.0*electron_mass_c2*sqrt(1.0 + 0.5*t/electron_mass_c2);
233 G4LorentzVector inlv = dParticle->Get4Momentum();
234 G4ThreeVector inBoost = inlv.boostVector();
235 if(e > emin) {
237 G4LorentzVector gLv = gamma->Get4Momentum();
238 G4LorentzVector lv(0.0,0.0,0.0,e);
239 lv -= gLv;
240 G4double mass = lv.m();
241 G4ThreeVector boost = lv.boostVector();
242 const G4ThreeVector dir = gamma->GetMomentumDirection();
243 model->SampleSecondaries(newp, mass, dir);
244 G4int np = newp->size();
245 for(G4int j=0; j<np; j++) {
246 G4DynamicParticle* dp = (*newp)[j];
248 v.boost(boost);
249 v.boost(inBoost);
250 dp->Set4Momentum(v);
251 }
252 gLv.boost(inBoost);
253 gamma->Set4Momentum(gLv);
254 newp->push_back(gamma);
255 }
256 }
257}
258
259//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
260
261void G4eeToHadronsModel::ComputeCMCrossSectionPerElectron()
262{
263 G4bool b;
264 for(G4int i=0; i<nbins; i++) {
265 G4double e = crossPerElectron->GetLowEdgeEnergy(i);
266 G4double cs = 0.0;
267 if(i > 0) {
268 G4double L = 2.0*log(e/electron_mass_c2);
269 G4double bt = 2.0*fine_structure_const*(L - 1.0)/pi;
270 G4double btm1= bt - 1.0;
271 G4double del = 1. + fine_structure_const*(1.5*L + pi*pi/3. -2.)/pi;
272 G4double s1 = crossBornPerElectron->GetValue(e, b);
273 G4double e1 = crossPerElectron->GetLowEdgeEnergy(i-1);
274 G4double x1 = 1. - e1/e;
275 cs += s1*(del*pow(x1,bt) - bt*(x1 - 0.25*x1*x1));
276 if(i > 1) {
277 G4double e2 = e1;
278 G4double x2 = x1;
279 G4double s2 = crossBornPerElectron->GetValue(e2, b);
280 G4double w2 = bt*(del*pow(x2,btm1) - 1.0 + 0.5*x2);
281 G4double w1;
282
283 for(G4int j=i-2; j>=0; j--) {
284 e1 = crossPerElectron->GetLowEdgeEnergy(j);
285 x1 = 1. - e1/e;
286 s1 = crossBornPerElectron->GetValue(e1, b);
287 w1 = bt*(del*pow(x1,btm1) - 1.0 + 0.5*x1);
288 cs += 0.5*(x1 - x2)*(w2*s2 + w1*s1);
289 e2 = e1;
290 x2 = x1;
291 s2 = s1;
292 w2 = w1;
293 }
294 }
295 }
296 crossPerElectron->PutValue(i, cs);
297 // G4cout << "e= " << e << " cs= " << cs << G4endl;
298 }
299}
300
301//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
302
304{
305 G4bool b;
306 G4double x;
307 G4DynamicParticle* gamma = 0;
308 G4double L = 2.0*log(e/electron_mass_c2);
309 G4double bt = 2.0*fine_structure_const*(L - 1.)/pi;
310 G4double btm1= bt - 1.0;
311 G4double del = 1. + fine_structure_const*(1.5*L + pi*pi/3. -2.)/pi;
312
313 G4double s0 = crossBornPerElectron->GetValue(e, b);
314 G4double de = (emax - emin)/(G4double)nbins;
315 G4double x0 = min(de,e - emin)/e;
316 G4double ds = crossBornPerElectron->GetValue(e, b)
317 *(del*pow(x0,bt) - bt*(x0 - 0.25*x0*x0));
318 G4double e1 = e*(1. - x0);
319
320 if(e1 < emax && s0*G4UniformRand()<ds) {
321 x = x0*pow(G4UniformRand(),1./bt);
322 } else {
323
324 x = 1. - e1/e;
325 G4double s1 = crossBornPerElectron->GetValue(e1, b);
326 G4double w1 = bt*(del*pow(x,btm1) - 1.0 + 0.5*x);
327 G4double grej = s1*w1;
328 G4double f;
329 // G4cout << "e= " << e/GeV << " epeak= " << epeak/GeV
330 // << " s1= " << s1 << " w1= " << w1
331 // << " grej= " << grej << G4endl;
332 // Above emax cross section is 0
333 if(e1 > emax) {
334 x = 1. - emax/e;
335 G4double s2 = crossBornPerElectron->GetValue(emax, b);
336 G4double w2 = bt*(del*pow(x,btm1) - 1.0 + 0.5*x);
337 grej = s2*w2;
338 // G4cout << "emax= " << emax << " s2= " << s2 << " w2= " << w2
339 // << " grej= " << grej << G4endl;
340 }
341
342 if(e1 > epeak) {
343 x = 1. - epeak/e;
344 G4double s2 = crossBornPerElectron->GetValue(epeak, b);
345 G4double w2 = bt*(del*pow(x,btm1) - 1.0 + 0.5*x);
346 grej = max(grej,s2*w2);
347 //G4cout << "epeak= " << epeak << " s2= " << s2 << " w2= " << w2
348 // << " grej= " << grej << G4endl;
349 }
350 G4double xmin = 1. - e1/e;
351 if(e1 > emax) xmin = 1. - emax/e;
352 G4double xmax = 1. - emin/e;
353 do {
354 x = xmin + G4UniformRand()*(xmax - xmin);
355 G4double s2 = crossBornPerElectron->GetValue((1.0 - x)*e, b);
356 G4double w2 = bt*(del*pow(x,btm1) - 1.0 + 0.5*x);
357 //G4cout << "x= " << x << " xmin= " << xmin << " xmax= " << xmax
358 // << " s2= " << s2 << " w2= " << w2
359 // << G4endl;
360 f = s2*w2;
361 if(f > grej) {
362 G4cout << "G4DynamicParticle* G4eeToHadronsModel:WARNING "
363 << f << " > " << grej << " majorant is`small!"
364 << G4endl;
365 }
366 } while (f < grej*G4UniformRand());
367 }
368
369 G4ThreeVector dir(0.0,0.0,1.0);
370 gamma = new G4DynamicParticle(theGamma,dir,x*e);
371 return gamma;
372}
373
374//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
375
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
const G4ThreeVector & GetMomentumDirection() const
G4LorentzVector Get4Momentum() const
G4double GetKineticEnergy() const
void Set4Momentum(const G4LorentzVector &momentum)
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
G4double GetElectronDensity() const
Definition: G4Material.hh:216
size_t GetVectorLength() const
G4double GetValue(G4double theEnergy, G4bool &isOutRange)
virtual G4double GetLowEdgeEnergy(size_t binNumber) const
void PutValue(size_t index, G4double theValue)
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:529
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:522
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:592
void SetLowEnergy(G4double val)
virtual G4PhysicsVector * PhysicsVector(G4double, G4double) const =0
G4double LowEnergy() const
virtual G4double ComputeCrossSection(G4double) const =0
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, G4double, const G4ThreeVector &)=0
virtual G4double PeakEnergy() const =0
G4double HighEnergy() const
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
G4DynamicParticle * GenerateCMPhoton(G4double)
virtual G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
G4eeToHadronsModel(G4Vee2hadrons *, G4int ver=0, const G4String &nam="eeToHadrons")
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin=0.0, G4double maxEnergy=DBL_MAX)