Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4INCLElasticChannel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Pekka Kaitaniemi, CEA and Helsinki Institute of Physics
28// Davide Mancusi, CEA
29// Alain Boudard, CEA
30// Sylvie Leray, CEA
31// Joseph Cugnon, University of Liege
32//
33// INCL++ revision: v5.1.8
34//
35#define INCLXX_IN_GEANT4_MODE 1
36
37#include "globals.hh"
38
40#include "G4INCLRandom.hh"
44#include "G4INCLGlobals.hh"
45
46namespace G4INCL {
47
49 :theNucleus(n), particle1(p1), particle2(p2)
50 {
51 }
52
54 {
55 }
56
58 {
59 ParticleType p1TypeOld = particle1->getType();
60 ParticleType p2TypeOld = particle2->getType();
61
62 /* Concerning the way we calculate the lab momentum, see the considerations
63 * in CrossSections::elasticNNLegacy().
64 */
65 const G4double s = KinematicsUtils::squareTotalEnergyInCM(particle1, particle2);
67
68 const G4int isospin = ParticleTable::getIsospin(particle1->getType()) +
70
71 // Calculate the outcome of the channel:
72 G4double psq = particle1->getMomentum().mag2();
73 G4double pnorm = std::sqrt(psq);
75 G4double btmax = 4.0 * psq * b;
76 G4double z = std::exp(-btmax);
77 G4double ranres = Random::shoot();
78 G4double y = 1.0 - ranres * (1.0 - z);
79 G4double T = std::log(y)/b;
80 G4int iexpi = 0;
81 G4double apt = 1.0;
82
83 // Handle np case
84 if((particle1->getType() == Proton && particle2->getType() == Neutron) ||
85 (particle1->getType() == Neutron && particle2->getType() == Proton)) {
86 if(pl > 800.0) {
87 const G4double x = 0.001 * pl; // Transform to GeV
88 apt = (800.0/pl)*(800.0/pl);
89 G4double cpt = std::max(6.23 * std::exp(-1.79*x), 0.3);
90 G4double alphac = 100.0 * 1.0e-6;
91 G4double aaa = (1 + apt) * (1 - std::exp(-btmax))/b;
92 G4double argu = psq * alphac;
93
94 if(argu >= 8) {
95 argu = 0.0;
96 } else {
97 argu = std::exp(-4.0 * argu);
98 }
99
100 G4double aac = cpt * (1.0 - argu)/alphac;
101 G4double fracpn = aaa/(aac + aaa);
102 if(Random::shoot() > fracpn) {
103 z = std::exp(-4.0 * psq *alphac);
104 iexpi = 1;
105 y = 1.0 - ranres*(1.0 - z);
106 T = std::log(y)/alphac;
107 }
108 }
109 }
110
111 G4double ctet = 1.0 + 0.5*T/psq;
112 if(std::abs(ctet) > 1.0) ctet = Math::sign(ctet);
113 G4double stet = std::sqrt(1.0 - ctet*ctet);
114 G4double rndm = Random::shoot();
115
116 G4double fi = Math::twoPi * rndm;
117 G4double cfi = std::cos(fi);
118 G4double sfi = std::sin(fi);
119
120 G4double xx = particle1->getMomentum().perp2();
121 G4double zz = std::pow(particle1->getMomentum().getZ(), 2);
122
123 if(xx >= (zz * 1.0e-8)) {
124 ThreeVector p = particle1->getMomentum();
125 G4double yn = std::sqrt(xx);
126 G4double zn = yn * pnorm;
127 G4double ex[3], ey[3], ez[3];
128 ez[0] = p.getX() / pnorm;
129 ez[1] = p.getY() / pnorm;
130 ez[2] = p.getZ() / pnorm;
131
132 // Vector Ex is chosen arbitrarily:
133 ex[0] = p.getY() / yn;
134 ex[1] = -p.getX() / yn;
135 ex[2] = 0.0;
136
137 ey[0] = p.getX() * p.getZ() / zn;
138 ey[1] = p.getY() * p.getZ() / zn;
139 ey[2] = -xx/zn;
140
141 G4double pX = (ex[0]*cfi*stet + ey[0]*sfi*stet + ez[0]*ctet) * pnorm;
142 G4double pY = (ex[1]*cfi*stet + ey[1]*sfi*stet + ez[1]*ctet) * pnorm;
143 G4double pZ = (ex[2]*cfi*stet + ey[2]*sfi*stet + ez[2]*ctet) * pnorm;
144
145 ThreeVector p1momentum = ThreeVector(pX, pY, pZ);
146 particle1->setMomentum(p1momentum);
147 particle2->setMomentum(-p1momentum);
148 } else { // if(xx < (zz * 1.0e-8)) {
149 G4double momZ = particle1->getMomentum().getZ();
150 G4double pX = momZ * cfi * stet;
151 G4double pY = momZ * sfi * stet;
152 G4double pZ = momZ * ctet;
153
154 ThreeVector p1momentum(pX, pY, pZ);
155 particle1->setMomentum(p1momentum);
156 particle2->setMomentum(-p1momentum);
157 }
158
159 // Handle backward scattering here.
160
161 if((particle1->getType() == Proton && particle2->getType() == Neutron) ||
162 (particle1->getType() == Neutron && particle2->getType() == Proton)) {
163 rndm = Random::shoot();
164 apt = 1.0;
165 if(pl > 800.0) {
166 apt = std::pow(800.0/pl, 2);
167 }
168 if(iexpi == 1 || rndm > 1.0/(1.0 + apt)) {
169 particle1->setType(p2TypeOld);
170 particle2->setType(p1TypeOld);
171 }
172 }
173
174 // Note: there is no need to update the kinetic energies of the particles,
175 // as this is elastic scattering.
176
177 FinalState *fs = new FinalState();
178 fs->addModifiedParticle(particle1);
179 fs->addModifiedParticle(particle2);
180
181 return fs;
182
183 }
184
185}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
static G4double calculateNNDiffCrossSection(G4double energyCM, G4int iso)
Calculate the slope of the NN DDXS.
ElasticChannel(Nucleus *n, Particle *p1, Particle *p2)
void addModifiedParticle(Particle *p)
static G4double squareTotalEnergyInCM(Particle const *const p1, Particle const *const p2)
static G4double momentumInLab(Particle const *const p1, Particle const *const p2)
gives the momentum in the lab frame of two particles.
static G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
static const G4double effectiveNucleonMass
const G4INCL::ThreeVector & getMomentum() const
virtual void setMomentum(const G4INCL::ThreeVector &momentum)
G4INCL::ParticleType getType() const
void setType(ParticleType t)
static G4double shoot()
Definition: G4INCLRandom.hh:99
G4double getY() const
G4double getZ() const
G4double perp2() const
G4double mag2() const
G4double getX() const
G4int sign(T t)
const G4double twoPi