Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4XrayRayleighModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// Author: Vladimir Grichine
29//
30// History:
31//
32// 14.10.12 V.Grichine, update of xsc and angular distribution
33// 25.05.2011 first implementation
34
37#include "G4SystemOfUnits.hh"
38
39////////////////////////////////////////////////////////////////////////////////////
40
41using namespace std;
42
43const G4double G4XrayRayleighModel::fCofA = 2.*pi2*Bohr_radius*Bohr_radius;
44
45const G4double G4XrayRayleighModel::fCofR = 8.*pi*classic_electr_radius*classic_electr_radius/3.;
46
47//////////////////////////////////////////////////////////////////////////////////.
48
50 const G4String& nam)
51 :G4VEmModel(nam),isInitialised(false)
52{
54 lowEnergyLimit = 250*eV;
55 highEnergyLimit = 10.*MeV;
56 fFormFactor = 0.0;
57
58 // SetLowEnergyLimit(lowEnergyLimit);
59 SetHighEnergyLimit(highEnergyLimit);
60 //
61 verboseLevel= 0;
62 // Verbosity scale:
63 // 0 = nothing
64 // 1 = warning for energy non-conservation
65 // 2 = details of energy budget
66 // 3 = calculation of cross sections, file openings, sampling of atoms
67 // 4 = entering in methods
68
69 if(verboseLevel > 0)
70 {
71 G4cout << "Xray Rayleigh is constructed " << G4endl
72 << "Energy range: "
73 << lowEnergyLimit / eV << " eV - "
74 << highEnergyLimit / MeV << " MeV"
75 << G4endl;
76 }
77}
78
79//////////////////////////////////////////////////////////////////////////////////
80
82{
83
84}
85
86/////////////////////////////////////////////////////////////////////////////////////
87
89 const G4DataVector& cuts)
90{
91 if (verboseLevel > 3)
92 {
93 G4cout << "Calling G4XrayRayleighModel::Initialise()" << G4endl;
94 }
95
96 InitialiseElementSelectors(particle,cuts);
97
98
99 if(isInitialised) return;
101 isInitialised = true;
102
103}
104
105/////////////////////////////////////////////////////////////////////////////////
106
109 G4double gammaEnergy,
112{
113 if (verboseLevel > 3)
114 {
115 G4cout << "Calling CrossSectionPerAtom() of G4XrayRayleighModel" << G4endl;
116 }
117 if (gammaEnergy < lowEnergyLimit || gammaEnergy > highEnergyLimit)
118 {
119 return 0.0;
120 }
121 G4double k = gammaEnergy/hbarc;
122 k *= Bohr_radius;
123 G4double p0 = 0.680654;
124 G4double p1 = -0.0224188;
125 G4double lnZ = std::log(Z);
126
127 G4double lna = p0 + p1*lnZ;
128
129 G4double alpha = std::exp(lna);
130
131 G4double fo = std::pow(k, alpha);
132
133 p0 = 3.68455;
134 p1 = -0.464806;
135 lna = p0 + p1*lnZ;
136
137 fo *= 0.01*std::exp(lna);
138
139 fFormFactor = fo;
140
141 G4double b = 1. + 2.*fo;
142 G4double b2 = b*b;
143 G4double b3 = b*b2;
144
145 G4double xsc = fCofR*Z*Z/b3;
146 xsc *= fo*fo + (1. + fo)*(1. + fo);
147
148
149 return xsc;
150
151}
152
153///////////////////////////////////////////////////////////////////////////////////
154
155void G4XrayRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
156 const G4MaterialCutsCouple* couple,
157 const G4DynamicParticle* aDynamicGamma,
158 G4double,
159 G4double)
160{
161 if ( verboseLevel > 3)
162 {
163 G4cout << "Calling SampleSecondaries() of G4XrayRayleighModel" << G4endl;
164 }
165 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy();
166
167 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
168
169
170 // Sample the angle of the scattered photon
171 // according to 1 + cosTheta*cosTheta distribution
172
173 G4double cosDipole, cosTheta, sinTheta;
174 G4double c, delta, cofA, signc = 1., a, power = 1./3.;
175
176 c = 4. - 8.*G4UniformRand();
177 a = c;
178
179 if( c < 0. )
180 {
181 signc = -1.;
182 a = -c;
183 }
184 delta = std::sqrt(a*a+4.);
185 delta += a;
186 delta *= 0.5;
187 cofA = -signc*std::pow(delta, power);
188 cosDipole = cofA - 1./cofA;
189
190 // select atom
191 const G4Element* elm = SelectRandomAtom(couple, aDynamicGamma->GetParticleDefinition(), photonEnergy0);
192 G4double Z = elm->GetZ();
193
194 G4double k = photonEnergy0/hbarc;
195 k *= Bohr_radius;
196 G4double p0 = 0.680654;
197 G4double p1 = -0.0224188;
198 G4double lnZ = std::log(Z);
199
200 G4double lna = p0 + p1*lnZ;
201
202 G4double alpha = std::exp(lna);
203
204 G4double fo = std::pow(k, alpha);
205
206 p0 = 3.68455;
207 p1 = -0.464806;
208 lna = p0 + p1*lnZ;
209
210 fo *= 0.01*pi*std::exp(lna);
211
212
213 G4double beta = fo/(1 + fo);
214
215 cosTheta = (cosDipole + beta)/(1. + cosDipole*beta);
216
217
218 if( cosTheta > 1.) cosTheta = 1.;
219 if( cosTheta < -1.) cosTheta = -1.;
220
221 sinTheta = std::sqrt( (1. - cosTheta)*(1. + cosTheta) );
222
223 // Scattered photon angles. ( Z - axis along the parent photon)
224
225 G4double phi = twopi * G4UniformRand() ;
226 G4double dirX = sinTheta*std::cos(phi);
227 G4double dirY = sinTheta*std::sin(phi);
228 G4double dirZ = cosTheta;
229
230 // Update G4VParticleChange for the scattered photon
231
232 G4ThreeVector photonDirection1(dirX, dirY, dirZ);
233 photonDirection1.rotateUz(photonDirection0);
234 fParticleChange->ProposeMomentumDirection(photonDirection1);
235
237}
238
239
double G4double
Definition: G4Types.hh:64
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
const G4ParticleDefinition * GetParticleDefinition() const
G4double GetKineticEnergy() const
G4double GetZ() const
Definition: G4Element.hh:131
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:459
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:123
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4XrayRayleighModel(const G4ParticleDefinition *p=0, const G4String &nam="XrayRayleigh")
G4ParticleChangeForGamma * fParticleChange
const G4double pi