Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4VScatteringCollision.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// @hpw@ misses the sampling of two breit wigner in a corelated fashion,
27// @hpw@ to be usefull for resonance resonance scattering.
28
29#include <typeinfo>
30
31#include "globals.hh"
32#include "G4SystemOfUnits.hh"
34#include "G4KineticTrack.hh"
36#include "G4Proton.hh"
37#include "G4Neutron.hh"
38#include "G4XNNElastic.hh"
40#include "G4ThreeVector.hh"
41#include "G4LorentzVector.hh"
42#include "G4LorentzRotation.hh"
44#include "Randomize.hh"
45#include "G4PionPlus.hh"
46
48{
49 theAngularDistribution = new G4AngularDistribution(true);
50}
51
52
54{
55 delete theAngularDistribution;
56}
57
58
60 const G4KineticTrack& trk2) const
61{
62 const G4VAngularDistribution* angDistribution = GetAngularDistribution();
63 G4LorentzVector p = trk1.Get4Momentum() + trk2.Get4Momentum();
64 G4double sqrtS = p.m();
65 G4double S = sqrtS * sqrtS;
66
67 std::vector<const G4ParticleDefinition*> OutputDefinitions = GetOutgoingParticles();
68 if (OutputDefinitions.size() != 2)
69 throw G4HadronicException(__FILE__, __LINE__, "G4VScatteringCollision: Too many output particles!");
70
71 if (OutputDefinitions[0]->IsShortLived() && OutputDefinitions[1]->IsShortLived())
72 {
73 if(getenv("G4KCDEBUG")) G4cerr << "two shortlived for Type = "<<typeid(*this).name()<<G4endl;
74 // throw G4HadronicException(__FILE__, __LINE__, "G4VScatteringCollision: can't handle two shortlived particles!"); // @hpw@
75 }
76
77 G4double outm1 = OutputDefinitions[0]->GetPDGMass();
78 G4double outm2 = OutputDefinitions[1]->GetPDGMass();
79
80 if (OutputDefinitions[0]->IsShortLived())
81 {
82 outm1 = SampleResonanceMass(outm1,
83 OutputDefinitions[0]->GetPDGWidth(),
84 G4Neutron::NeutronDefinition()->GetPDGMass()+G4PionPlus::PionPlus()->GetPDGMass(),
85 sqrtS-(G4Neutron::NeutronDefinition()->GetPDGMass()+G4PionPlus::PionPlus()->GetPDGMass()));
86
87 }
88 if (OutputDefinitions[1]->IsShortLived())
89 {
90 outm2 = SampleResonanceMass(outm2, OutputDefinitions[1]->GetPDGWidth(),
91 G4Neutron::NeutronDefinition()->GetPDGMass()+G4PionPlus::PionPlus()->GetPDGMass(),
92 sqrtS-outm1);
93 }
94
95 // Angles of outgoing particles
96 G4double cosTheta = angDistribution->CosTheta(S, trk1.GetActualMass(), trk2.GetActualMass());
97 G4double phi = angDistribution->Phi();
98
99 // Unit vector of three-momentum
100 G4LorentzRotation fromCMSFrame(p.boostVector());
101 G4LorentzRotation toCMSFrame(fromCMSFrame.inverse());
102 G4LorentzVector TempPtr = toCMSFrame*trk1.Get4Momentum();
104 toZ.rotateZ(-1*TempPtr.phi());
105 toZ.rotateY(-1*TempPtr.theta());
106 G4LorentzRotation toCMS(toZ.inverse());
107
108 G4ThreeVector pFinal1(std::sin(std::acos(cosTheta))*std::cos(phi), std::sin(std::acos(cosTheta))*std::sin(phi), cosTheta);
109
110 // Three momentum in cm system
111 G4double pCM = std::sqrt( (S-(outm1+outm2)*(outm1+outm2)) * (S-(outm1-outm2)*(outm1-outm2)) /(4.*S));
112 pFinal1 = pFinal1 * pCM;
113 G4ThreeVector pFinal2 = -pFinal1;
114
115 G4double eFinal1 = std::sqrt(pFinal1.mag2() + outm1*outm1);
116 G4double eFinal2 = std::sqrt(pFinal2.mag2() + outm2*outm2);
117
118 G4LorentzVector p4Final1(pFinal1, eFinal1);
119 G4LorentzVector p4Final2(pFinal2, eFinal2);
120 p4Final1 = toCMS*p4Final1;
121 p4Final2 = toCMS*p4Final2;
122
123
124 // Lorentz transformation
125 G4LorentzRotation toLabFrame(p.boostVector());
126 p4Final1 *= toLabFrame;
127 p4Final2 *= toLabFrame;
128
129 // Final tracks are copies of incoming ones, with modified 4-momenta
130
131 G4double chargeBalance = OutputDefinitions[0]->GetPDGCharge()+OutputDefinitions[1]->GetPDGCharge();
132 chargeBalance-= trk1.GetDefinition()->GetPDGCharge();
133 chargeBalance-= trk2.GetDefinition()->GetPDGCharge();
134 if(std::abs(chargeBalance) >.1)
135 {
136 G4cout << "Charges in "<<typeid(*this).name()<<G4endl;
137 G4cout << OutputDefinitions[0]->GetPDGCharge()<<" "<<OutputDefinitions[0]->GetParticleName()
138 << OutputDefinitions[1]->GetPDGCharge()<<" "<<OutputDefinitions[1]->GetParticleName()
139 << trk1.GetDefinition()->GetPDGCharge()<<" "<<trk1.GetDefinition()->GetParticleName()
140 << trk2.GetDefinition()->GetPDGCharge()<<" "<<trk2.GetDefinition()->GetParticleName()<<G4endl;
141 }
142 G4KineticTrack* final1 = new G4KineticTrack(const_cast<G4ParticleDefinition *>(OutputDefinitions[0]), 0.0,
143 trk1.GetPosition(), p4Final1);
144 G4KineticTrack* final2 = new G4KineticTrack(const_cast<G4ParticleDefinition *>(OutputDefinitions[1]), 0.0,
145 trk2.GetPosition(), p4Final2);
146
148
149 finalTracks->push_back(final1);
150 finalTracks->push_back(final2);
151
152 return finalTracks;
153}
154
155
156
157double G4VScatteringCollision::SampleResonanceMass(const double poleMass,
158 const double gamma,
159 const double aMinMass,
160 const double maxMass) const
161{
162 // Chooses a mass randomly between minMass and maxMass
163 // according to a Breit-Wigner function with constant
164 // width gamma and pole poleMass
165
166 G4double minMass = aMinMass;
167 if (minMass > maxMass) G4cerr << "##################### SampleResonanceMass: particle out of mass range" << G4endl;
168 if(minMass > maxMass) minMass -= G4PionPlus::PionPlus()->GetPDGMass();
169 if(minMass > maxMass) minMass = 0;
170
171 if (gamma < 1E-10*GeV)
172 return std::max(minMass,std::min(maxMass, poleMass));
173 else {
174 double fmin = BrWigInt0(minMass, gamma, poleMass);
175 double fmax = BrWigInt0(maxMass, gamma, poleMass);
176 double f = fmin + (fmax-fmin)*G4UniformRand();
177 return BrWigInv(f, gamma, poleMass);
178 }
179}
double G4double
Definition: G4Types.hh:64
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cerr
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
double mag2() const
HepLorentzRotation & rotateY(double delta)
HepLorentzRotation & rotateZ(double delta)
HepLorentzRotation inverse() const
double theta() const
Hep3Vector boostVector() const
const G4ThreeVector & GetPosition() const
G4ParticleDefinition * GetDefinition() const
const G4LorentzVector & Get4Momentum() const
G4double GetActualMass() const
static G4Neutron * NeutronDefinition()
Definition: G4Neutron.cc:99
G4double GetPDGCharge() const
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
virtual G4double Phi() const
virtual G4double CosTheta(G4double s, G4double m1, G4double m2) const =0
virtual const G4VAngularDistribution * GetAngularDistribution() const
virtual G4KineticTrackVector * FinalState(const G4KineticTrack &trk1, const G4KineticTrack &trk2) const
virtual const std::vector< const G4ParticleDefinition * > & GetOutgoingParticles() const =0