Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4EqEMFieldWithEDM.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29//
30// This is the standard right-hand side for equation of motion.
31//
32// 19.02.2009 Kevin Lynch, based on G4EqEMFieldWithSpin
33// 06.11.2009 Hiromi Iinuma see:
34// http://hypernews.slac.stanford.edu/HyperNews/geant4/get/emfields/161.html
35//
36// -------------------------------------------------------------------
37
38#include "G4EqEMFieldWithEDM.hh"
40#include "G4ThreeVector.hh"
41#include "globals.hh"
43#include "G4SystemOfUnits.hh"
44
46 : G4EquationOfMotion( emField ), fElectroMagCof(0.), fMassCof(0.),
47 omegac(0.), anomaly(0.0011659208), eta(0.), pcharge(0.), E(0.),
48 gamma(0.), beta(0.)
49{
50}
51
53{
54}
55
56void
58 G4double MomentumXc,
59 G4double particleMass)
60{
61 fElectroMagCof = eplus*particleCharge*c_light ;
62 fMassCof = particleMass*particleMass ;
63
64 omegac = (eplus/particleMass)*c_light;
65
66 pcharge = particleCharge;
67
68 E = std::sqrt(sqr(MomentumXc)+sqr(particleMass));
69 beta = MomentumXc/E;
70 gamma = E/particleMass;
71
72}
73
74void
76 const G4double Field[],
77 G4double dydx[] ) const
78{
79
80 // Components of y:
81 // 0-2 dr/ds,
82 // 3-5 dp/ds - momentum derivatives
83 // 9-11 dSpin/ds = (1/beta) dSpin/dt - spin derivatives
84
85 // The BMT equation, following J.D.Jackson, Classical
86 // Electrodynamics, Second Edition, with additions for EDM
87 // evolution from
88 // M.Nowakowski, et.al. Eur.J.Phys.26, pp 545-560, (2005)
89 // or
90 // Silenko, Phys.Rev.ST Accel.Beams 9:034003, (2006)
91
92 // dS/dt = (e/m) S \cross
93 // MDM: [ (g/2-1 +1/\gamma) B
94 // -(g/2-1)\gamma/(\gamma+1) (\beta \cdot B)\beta
95 // -(g/2-\gamma/(\gamma+1) \beta \cross E
96 //
97 // EDM: eta/2( E - gamma/(gamma+1) \beta (\beta \cdot E)
98 // + \beta \cross B ) ]
99 //
100 // where
101 // S = \vec{s}, where S^2 = 1
102 // B = \vec{B}
103 // \beta = \vec{\beta} = \beta \vec{u} with u^2 = 1
104 // E = \vec{E}
105
106 G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
107
108 G4double Energy = std::sqrt( pSquared + fMassCof );
109 G4double cof2 = Energy/c_light ;
110
111 G4double pModuleInverse = 1.0/std::sqrt(pSquared) ;
112
113 G4double inverse_velocity = Energy * pModuleInverse / c_light;
114
115 G4double cof1 = fElectroMagCof*pModuleInverse ;
116
117 dydx[0] = y[3]*pModuleInverse ;
118 dydx[1] = y[4]*pModuleInverse ;
119 dydx[2] = y[5]*pModuleInverse ;
120
121 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ;
122
123 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ;
124
125 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ;
126
127 dydx[6] = dydx[8] = 0.;//not used
128
129 // Lab Time of flight
130 dydx[7] = inverse_velocity;
131
132 G4ThreeVector BField(Field[0],Field[1],Field[2]);
133 G4ThreeVector EField(Field[3],Field[4],Field[5]);
134
135 EField /= c_light;
136
137 G4ThreeVector u(y[3], y[4], y[5]);
138 u *= pModuleInverse;
139
140 G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u);
141 G4double ucb = (anomaly+1./gamma)/beta;
142 G4double uce = anomaly + 1./(gamma+1.);
143 G4double ude = beta*gamma/(1.+gamma)*(EField*u);
144
145 G4ThreeVector Spin(y[9],y[10],y[11]);
146
147 G4ThreeVector dSpin
148 = pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u))
149 // from Jackson
150 // -uce*Spin.cross(u.cross(EField)) )
151 // but this form has one less operation
152 - uce*(u*(Spin*EField) - EField*(Spin*u))
153 + eta/2.*(Spin.cross(EField) - ude*(Spin.cross(u))
154 // +Spin.cross(u.cross(Bfield))
155 + (u*(Spin*BField) - BField*(Spin*u)) ) );
156
157 dydx[ 9] = dSpin.x();
158 dydx[10] = dSpin.y();
159 dydx[11] = dSpin.z();
160
161 return ;
162}
double G4double
Definition: G4Types.hh:64
double z() const
double x() const
double y() const
Hep3Vector cross(const Hep3Vector &) const
void SetChargeMomentumMass(G4double particleCharge, G4double MomentumXc, G4double mass)
void EvaluateRhsGivenB(const G4double y[], const G4double Field[], G4double dydx[]) const
G4EqEMFieldWithEDM(G4ElectroMagneticField *emField)
T sqr(const T &x)
Definition: templates.hh:145