Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4NeutronHPMadlandNixSpectrum.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// neutron_hp -- source file
27// J.P. Wellisch, Nov-1996
28// A prototype of the low energy neutron transport model.
29
31#include "G4SystemOfUnits.hh"
32
33 G4double G4NeutronHPMadlandNixSpectrum::Madland(G4double aSecEnergy, G4double tm)
34 {
35 G4double result;
36 G4double energy = aSecEnergy/eV;
37 G4double EF;
38
39 EF = theAvarageKineticPerNucleonForLightFragments/eV;
40 G4double lightU1 = std::sqrt(energy)-std::sqrt(EF);
41 lightU1 *= lightU1/tm;
42 G4double lightU2 = std::sqrt(energy)+std::sqrt(EF);
43 lightU2 *= lightU2/tm;
44 G4double lightTerm=0;
45 if(theAvarageKineticPerNucleonForLightFragments>1*eV)
46 {
47 lightTerm = std::pow(lightU2, 1.5)*E1(lightU2);
48 lightTerm -= std::pow(lightU1, 1.5)*E1(lightU1);
49 lightTerm += Gamma15(lightU2)-Gamma15(lightU1);
50 lightTerm /= 3.*std::sqrt(tm*EF);
51 }
52
53 EF = theAvarageKineticPerNucleonForHeavyFragments/eV;
54 G4double heavyU1 = std::sqrt(energy)-std::sqrt(EF);
55 heavyU1 *= heavyU1/tm;
56 G4double heavyU2 = std::sqrt(energy)+std::sqrt(EF);
57 heavyU2 *= heavyU2/tm;
58 G4double heavyTerm=0 ;
59 if(theAvarageKineticPerNucleonForHeavyFragments> 1*eV)
60 {
61 heavyTerm = std::pow(heavyU2, 1.5)*E1(heavyU2);
62 heavyTerm -= std::pow(heavyU1, 1.5)*E1(heavyU1);
63 heavyTerm += Gamma15(heavyU2)-Gamma15(heavyU1);
64 heavyTerm /= 3.*std::sqrt(tm*EF);
65 }
66
67 result = 0.5*(lightTerm+heavyTerm);
68
69 return result;
70 }
71
73 {
74 G4double tm = theMaxTemp.GetY(anEnergy);
75 G4double last=0, buff, current = 100*MeV;
76 G4double precision = 0.001;
77 G4double newValue = 0., oldValue=0.;
78 G4double random = G4UniformRand();
79
80 do
81 {
82 oldValue = newValue;
83 newValue = FissionIntegral(tm, current);
84 if(newValue < random)
85 {
86 buff = current;
87 current+=std::abs(current-last)/2.;
88 last = buff;
89 if(current>190*MeV) throw G4HadronicException(__FILE__, __LINE__, "Madland-Nix Spectrum has not converged in sampling");
90 }
91 else
92 {
93 buff = current;
94 current-=std::abs(current-last)/2.;
95 last = buff;
96 }
97 }
98 while (std::abs(oldValue-newValue)>precision*newValue);
99 return current;
100 }
101
102 G4double G4NeutronHPMadlandNixSpectrum::
103 GIntegral(G4double tm, G4double anEnergy, G4double aMean)
104 {
105 if(aMean<1*eV) return 0;
106 G4double b = anEnergy/eV;
107 G4double sb = std::sqrt(b);
108 G4double EF = aMean/eV;
109
110 G4double alpha = std::sqrt(tm);
111 G4double beta = std::sqrt(EF);
112 G4double A = EF/tm;
113 G4double B = (sb+beta)*(sb+beta)/tm;
114 G4double Ap = A;
115 G4double Bp = (sb-beta)*(sb-beta)/tm;
116
117 G4double result;
118 G4double alpha2 = alpha*alpha;
119 G4double alphabeta = alpha*beta;
120 if(b<EF)
121 {
122 result =
123 (
124 (0.4*alpha2*std::pow(B,2.5) - 0.5*alphabeta*B*B)*E1(B) -
125 (0.4*alpha2*std::pow(A,2.5) - 0.5*alphabeta*A*A)*E1(A)
126 )
127 -
128 (
129 (0.4*alpha2*std::pow(Bp,2.5) + 0.5*alphabeta*Bp*Bp)*E1(Bp) -
130 (0.4*alpha2*std::pow(Ap,2.5) + 0.5*alphabeta*Ap*Ap)*E1(Ap)
131 )
132 +
133 (
134 (alpha2*B-2*alphabeta*std::sqrt(B))*Gamma15(B) -
135 (alpha2*A-2*alphabeta*std::sqrt(A))*Gamma15(A)
136 )
137 -
138 (
139 (alpha2*Bp-2*alphabeta*std::sqrt(Bp))*Gamma15(Bp) -
140 (alpha2*Ap-2*alphabeta*std::sqrt(Ap))*Gamma15(Ap)
141 )
142 - 0.6*alpha2*(Gamma25(B) - Gamma25(A) - Gamma25(Bp) + Gamma25(Ap))
143 - 1.5*alphabeta*(std::exp(-B)*(1+B) - std::exp(-A)*(1+A) + std::exp(-Bp)*(1+Bp) + std::exp(-Ap)*(1+Ap)) ;
144 }
145 else
146 {
147 result =
148 (
149 (0.4*alpha2*std::pow(B,2.5) - 0.5*alphabeta*B*B)*E1(B) -
150 (0.4*alpha2*std::pow(A,2.5) - 0.5*alphabeta*A*A)*E1(A)
151 );
152 result -=
153 (
154 (0.4*alpha2*std::pow(Bp,2.5) + 0.5*alphabeta*Bp*Bp)*E1(Bp) -
155 (0.4*alpha2*std::pow(Ap,2.5) + 0.5*alphabeta*Ap*Ap)*E1(Ap)
156 );
157 result +=
158 (
159 (alpha2*B-2*alphabeta*std::sqrt(B))*Gamma15(B) -
160 (alpha2*A-2*alphabeta*std::sqrt(A))*Gamma15(A)
161 );
162 result -=
163 (
164 (alpha2*Bp+2*alphabeta*std::sqrt(Bp))*Gamma15(Bp) -
165 (alpha2*Ap+2*alphabeta*std::sqrt(Ap))*Gamma15(Ap)
166 );
167 result -= 0.6*alpha2*(Gamma25(B) - Gamma25(A) - Gamma25(Bp) + Gamma25(Ap));
168 result -= 1.5*alphabeta*(std::exp(-B)*(1+B) - std::exp(-A)*(1+A) + std::exp(-Bp)*(1+Bp) + std::exp(-Ap)*(1+Ap) - 2.) ;
169 }
170 result = result / (3.*std::sqrt(tm*EF));
171 return result;
172 }
double G4double
Definition: G4Types.hh:64
#define G4UniformRand()
Definition: Randomize.hh:53
G4double GetY(G4double x)