Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4TritonEvaporationProbability.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// J.M. Quesada (August2008). Based on:
29//
30// Hadronic Process: Nuclear De-excitations
31// by V. Lara (Oct 1998)
32//
33// Modified:
34// 03-09-2008 J.M. Quesada for external choice of inverse cross section option
35// 17-11-2010 V.Ivanchenko integer Z and A
36
38#include "G4SystemOfUnits.hh"
39
41 G4EvaporationProbability(3,1,2,&theCoulombBarrier) // A,Z,Gamma,&theCoulombBarrier
42{
43 ResidualA = ResidualZ = theA = theZ = FragmentA = 0;
44 ResidualAthrd = FragmentAthrd = 0.0;
45}
46
48{}
49
50G4double G4TritonEvaporationProbability::CalcAlphaParam(const G4Fragment & fragment)
51{
52 return 1.0 + CCoeficient(fragment.GetZ_asInt()-GetZ());
53}
54
55G4double G4TritonEvaporationProbability::CalcBetaParam(const G4Fragment & )
56{
57 return 0.0;
58}
59
60G4double G4TritonEvaporationProbability::CCoeficient(G4int aZ)
61{
62 // Data comes from
63 // Dostrovsky, Fraenkel and Friedlander
64 // Physical Review, vol 116, num. 3 1959
65 //
66 // const G4int size = 5;
67 // G4double Zlist[5] = { 10.0, 20.0, 30.0, 50.0, 70.0};
68 // G4double Cp[5] = { 0.50, 0.28, 0.20, 0.15, 0.10};
69 // C for triton is equal to C for protons divided by 3
70 G4double C = 0.0;
71
72 if (aZ >= 70) {
73 C = 0.10;
74 } else {
75 C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375;
76 }
77
78 return C/3.0;
79}
80
81///////////////////////////////////////////////////////////////////////////////////
82//J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
83//OPT=0 Dostrovski's parameterization
84//OPT=1,2 Chatterjee's paramaterization
85//OPT=3,4 Kalbach's parameterization
86//
88G4TritonEvaporationProbability::CrossSection(const G4Fragment & fragment, G4double K)
89{
90 theA=GetA();
91 theZ=GetZ();
92 ResidualA=fragment.GetA_asInt()-theA;
93 ResidualZ=fragment.GetZ_asInt()-theZ;
94
95 ResidualAthrd=fG4pow->Z13(ResidualA);
96 FragmentA=fragment.GetA_asInt();
97 FragmentAthrd=fG4pow->Z13(FragmentA);
98
99 if (OPTxs==0) {std::ostringstream errOs;
100 errOs << "We should'n be here (OPT =0) at evaporation cross section calculation (tritons)!!"
101 <<G4endl;
102 throw G4HadronicException(__FILE__, __LINE__, errOs.str());
103 return 0.;}
104 if( OPTxs==1 || OPTxs==2) return G4TritonEvaporationProbability::GetOpt12( K);
105 else if (OPTxs==3 || OPTxs==4) return G4TritonEvaporationProbability::GetOpt34( K);
106 else{
107 std::ostringstream errOs;
108 errOs << "BAD Triton CROSS SECTION OPTION AT EVAPORATION!!" <<G4endl;
109 throw G4HadronicException(__FILE__, __LINE__, errOs.str());
110 return 0.;
111 }
112}
113
114//
115//********************* OPT=1,2 : Chatterjee's cross section *****************
116//(fitting to cross section from Bechetti & Greenles OM potential)
117
118G4double G4TritonEvaporationProbability::GetOpt12(G4double K)
119{
120 G4double Kc=K;
121
122 // JMQ xsec is set constat above limit of validity
123 if (K > 50*MeV) { Kc=50*MeV; }
124
125 G4double landa ,mu ,nu ,p , Ec,q,r,ji,xs;
126
127 G4double p0 = -11.04;
128 G4double p1 = 619.1;
129 G4double p2 = -2147.;
130 G4double landa0 = -0.0426;
131 G4double landa1 = -10.33;
132 G4double mum0 = 601.9;
133 G4double mu1 = 0.37;
134 G4double nu0 = 583.0;
135 G4double nu1 = -546.2;
136 G4double nu2 = 1.718;
137 G4double delta=1.2;
138
139 Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
140 p = p0 + p1/Ec + p2/(Ec*Ec);
141 landa = landa0*ResidualA + landa1;
142
143 G4double resmu1 = fG4pow->powZ(ResidualA,mu1);
144 mu = mum0*resmu1;
145 nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
146 q = landa - nu/(Ec*Ec) - 2*p*Ec;
147 r = mu + 2*nu/Ec + p*(Ec*Ec);
148
149 ji=std::max(Kc,Ec);
150 if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
151 else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
152
153 if (xs <0.0) {xs=0.0;}
154
155 return xs;
156}
157
158// *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
159G4double G4TritonEvaporationProbability::GetOpt34(G4double K)
160// ** t from o.m. of hafele, flynn et al
161{
162 G4double landa, mu, nu, p , signor(1.),sig;
163 G4double ec,ecsq,xnulam,etest(0.),a;
164 G4double b,ecut,cut,ecut2,geom,elab;
165
166 G4double flow = 1.e-18;
167 G4double spill= 1.e+18;
168
169 G4double p0 = -21.45;
170 G4double p1 = 484.7;
171 G4double p2 = -1608.;
172 G4double landa0 = 0.0186;
173 G4double landa1 = -8.90;
174 G4double mum0 = 686.3;
175 G4double mu1 = 0.325;
176 G4double nu0 = 368.9;
177 G4double nu1 = -522.2;
178 G4double nu2 = -4.998;
179
180 G4double ra=0.80;
181
182 //JMQ 13/02/09 increase of reduced radius to lower the barrier
183 // ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
184 ec = 1.44 * theZ * ResidualZ / (1.7*ResidualAthrd+ra);
185 ecsq = ec * ec;
186 p = p0 + p1/ec + p2/ecsq;
187 landa = landa0*ResidualA + landa1;
188 a = fG4pow->powZ(ResidualA,mu1);
189 mu = mum0 * a;
190 nu = a* (nu0+nu1*ec+nu2*ecsq);
191 xnulam = nu / landa;
192 if (xnulam > spill) { xnulam=0.; }
193 if (xnulam >= flow) { etest = 1.2 *std::sqrt(xnulam); }
194
195 a = -2.*p*ec + landa - nu/ecsq;
196 b = p*ecsq + mu + 2.*nu/ec;
197 ecut = 0.;
198 cut = a*a - 4.*p*b;
199 if (cut > 0.) { ecut = std::sqrt(cut); }
200 ecut = (ecut-a) / (p+p);
201 ecut2 = ecut;
202 //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
203 // ecut<0 means that there is no cut with energy axis, i.e. xs is set
204 // to 0 bellow minimum
205 // if (cut < 0.) ecut2 = ecut - 2.;
206 if (cut < 0.) { ecut2 = ecut; }
207 elab = K * FragmentA / G4double(ResidualA);
208 sig = 0.;
209
210 if (elab <= ec) { //start for E<Ec
211 if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
212 } //end for E<Ec
213 else { //start for E>Ec
214 sig = (landa*elab+mu+nu/elab) * signor;
215 geom = 0.;
216 if (xnulam < flow || elab < etest) { return sig; }
217 geom = std::sqrt(theA*K);
218 geom = 1.23*ResidualAthrd + ra + 4.573/geom;
219 geom = 31.416 * geom * geom;
220 sig = std::max(geom,sig);
221 } //end for E>Ec
222 return sig;
223}
224
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4int GetZ_asInt() const
Definition: G4Fragment.hh:223
G4int GetA_asInt() const
Definition: G4Fragment.hh:218
G4double Z13(G4int Z)
Definition: G4Pow.hh:110
G4double powZ(G4int Z, G4double y)
Definition: G4Pow.hh:180