Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4StatDouble.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id:$
28// GEANT4 tag $Name: not supported by cvs2svn $
29//
30//
31// ----------------------------------------------------------------------
32// class G4StatDouble
33//
34// Implementation.
35// Original Author: Giovanni Santin (ESA) - October 2005 in GRAS tool
36// Adapted by: John Apostolakis - November 2011
37
38#include "G4StatDouble.hh"
39
41{
42 reset();
43}
44
46{
47 m_sum_wx = 0.;
48 m_sum_wx2 = 0.;
49 m_n = 0;
50 m_sum_w = 0.;
51 m_sum_w2 = 0.;
52 m_scale = 1.;
53}
54
56{}
57
59{
60 m_sum_wx += value * weight;
61 m_sum_wx2 += value * value * weight;
62 m_n++;
63 m_sum_w += weight;
64 m_sum_w2 += weight * weight;
65
66 if (weight <= 0.)
67 {
68 G4cout << "[G4StatDouble::fill] WARNING: weight<=0. "
69 << weight << G4endl;
70 }
71}
72
74{
75 m_scale = m_scale * value;
76}
77
79{
80 G4double mean_val = 0.;
81 if (m_sum_w > 0.)
82 {
83 mean_val = m_sum_wx / m_sum_w;
84 }
85 return m_scale * mean_val;
86}
87
89{
90 G4double factor = 0.;
91 // factor to rescale the Mean for the requested number
92 // of events (or sum of weights) ext_sum_w
93
94 if (ext_sum_w > 0)
95 {
96 factor = m_sum_w;
97 factor /= ext_sum_w;
98 }
99 return mean() * factor;
100
101}
102
104 G4double ssum_w, G4int nn)
105{
106 G4double vrms;
107 if (nn > 1)
108 {
109 G4double vmean = ssum_wx / ssum_w;
110 G4double xn = nn;
111 G4double tmp =
112 // from GNU Scientific Library. This part is equivalent to N/(N-1)
113 // when w_i = w
114 // ((m_sum_w * m_sum_w) / (m_sum_w * m_sum_w - m_sum_w2))
115
116 // from NIST "DATAPLOT Reference manual", Page 2-66
117 // http://www.itl.nist.gov/div898/software/dataplot/refman2/ch2/weightsd.pdf
118 // rewritten based on: SUM[w(x-m)^2]/SUM[w] = SUM[wx^2]/SUM[w] - m^2
119 // and dividing it by sqrt[n] to go from rms of distribution to the
120 // rms of the mean value
121
122 (1. / (xn - 1))
123 * ((ssum_wx2 / ssum_w) - (vmean * vmean));
124
125 if (tmp < 0.) tmp=0.; // this avoids observed computation problem
126 vrms = std::sqrt( tmp );
127// G4cout << "[G4StatDoubleElement::rms] m_sum_wx: " << m_sum_wx
128// << " m_sum_wx2: " << m_sum_wx2 << " m_sum_w: " << m_sum_w
129// << " m_n: " << m_n << " tmp: " << tmp<< " rms: " << rms
130// << G4endl;
131// G4cout << "[G4StatDoubleElement::rms] (m_n / (m_n - 1)): " << (xn/(xn - 1))
132// << " (m_sum_wx2 / m_sum_w): " << (m_sum_wx2 / m_sum_w)
133// << " (mean * mean): " << (mean * mean)
134// << " ((m_sum_wx2 / m_sum_w) - (mean * mean)): "
135// << ((m_sum_wx2 / m_sum_w) - (mean * mean))
136// << G4endl;
137 }
138 else
139 {
140 vrms = -1.;
141 }
142 return vrms * m_scale;
143}
144
146{
147 // this method computes the RMS with "all internal" parameters:
148 // all the sums are the internal ones: m_sum_wx, m_sum_wx2, m_sum_w, m_n
149
150 return rms(m_sum_wx, m_sum_wx2, m_sum_w, m_n);
151}
152
154{
155 // this method computes the RMS with sum_w and n coming from outside:
156 // ext_sum_w and ext_n:
157 // this means that the result is normalised to the external events
158 // it is useful when, given a number ext_n of events with sum of the weights
159 // ext_sum_w, only m_n (with sum of weights m_sum_w) are actually accumulated
160 // in the internal summation (e.g. for a dose variable in a volume, because
161 // only a few particles reach that volume)
162
163 return rms(m_sum_wx, m_sum_wx2, ext_sum_w, ext_n);
164}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
G4double m_sum_wx
Definition: G4StatDouble.hh:82
virtual ~G4StatDouble()
Definition: G4StatDouble.cc:55
G4double m_sum_w
Definition: G4StatDouble.hh:85
G4double rms()
G4double m_scale
Definition: G4StatDouble.hh:87
G4double m_sum_w2
Definition: G4StatDouble.hh:86
G4double mean() const
Definition: G4StatDouble.cc:78
G4double m_sum_wx2
Definition: G4StatDouble.hh:83
void fill(G4double x, G4double weight=1.)
Definition: G4StatDouble.cc:58
void scale(G4double)
Definition: G4StatDouble.cc:73