Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4Integrator.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// Class description:
30//
31// Template class collecting integrator methods for generic funtions.
32
33// History:
34//
35// 04.09.99 V.Grichine, first implementation based on G4SimpleIntegration class
36// H.P.Wellisch, G.Cosmo, and E.Cherniaev advises
37// 08.09.99 V.Grichine, methods involving orthogonal polynomials
38//
39
40
41#ifndef G4INTEGRATOR_HH
42#define G4INTEGRATOR_HH 1
43
44#include "G4Types.hh"
45#include <cmath>
47
48template <class T, class F>
50{
51 public: // with description
52
55
56 G4double Simpson( T& typeT, F f, G4double a, G4double b, G4int n ) ;
57 G4double Simpson( T* ptrT, F f, G4double a, G4double b, G4int n ) ;
59 G4double a, G4double b, G4int n ) ;
60 // Simpson integration method
61
62 G4double AdaptiveGauss( T& typeT, F f, G4double a, G4double b, G4double e ) ;
63 G4double AdaptiveGauss( T* ptrT, F f, G4double a, G4double b, G4double e ) ;
65 G4double a, G4double b, G4double e ) ;
66 // Adaptive Gauss method
67
68
69 // Integration methods involving orthogohol polynomials
70
71 G4double Legendre( T& typeT, F f, G4double a, G4double b, G4int n) ;
72 G4double Legendre( T* ptrT, F f, G4double a, G4double b, G4int n) ;
74 //
75 // Methods involving Legendre polynomials
76
77 G4double Legendre10( T& typeT, F f,G4double a, G4double b) ;
78 G4double Legendre10( T* ptrT, F f,G4double a, G4double b) ;
80 //
81 // Legendre10 is very fast and accurate enough
82
83 G4double Legendre96( T& typeT, F f,G4double a, G4double b) ;
84 G4double Legendre96( T* ptrT, F f,G4double a, G4double b) ;
86 //
87 // Legendre96 is very accurate and fast enough
88
89 G4double Chebyshev( T& typeT, F f, G4double a, G4double b, G4int n) ;
90 G4double Chebyshev( T* ptrT, F f, G4double a, G4double b, G4int n) ;
92 //
93 // Methods involving Chebyshev polynomials
94
95 G4double Laguerre( T& typeT, F f, G4double alpha, G4int n) ;
96 G4double Laguerre( T* ptrT, F f, G4double alpha, G4int n) ;
98 //
99 // Method involving Laguerre polynomials
100
101 G4double Hermite( T& typeT, F f, G4int n) ;
102 G4double Hermite( T* ptrT, F f, G4int n) ;
104 //
105 // Method involving Hermite polynomials
106
107 G4double Jacobi( T& typeT, F f, G4double alpha, G4double beta, G4int n) ;
108 G4double Jacobi( T* ptrT, F f, G4double alpha, G4double beta, G4int n) ;
110 G4double beta, G4int n) ;
111 // Method involving Jacobi polynomials
112
113
114 protected:
115
116 // Auxiliary function for adaptive Gauss method
117
118 G4double Gauss( T& typeT, F f, G4double a, G4double b ) ;
119 G4double Gauss( T* ptrT, F f, G4double a, G4double b ) ;
121
122 void AdaptGauss( T& typeT, F f, G4double a, G4double b,
123 G4double e, G4double& sum, G4int& n) ;
124 void AdaptGauss( T* typeT, F f, G4double a, G4double b,
125 G4double e, G4double& sum, G4int& n ) ;
127 G4double e, G4double& sum, G4int& n ) ;
128
130
131
132} ;
133
134#include "G4Integrator.icc"
135
136#endif
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4double Gauss(T &typeT, F f, G4double a, G4double b)
G4double Jacobi(G4double(*f)(G4double), G4double alpha, G4double beta, G4int n)
G4double Simpson(T *ptrT, F f, G4double a, G4double b, G4int n)
G4double Legendre96(T &typeT, F f, G4double a, G4double b)
G4double AdaptiveGauss(T *ptrT, F f, G4double a, G4double b, G4double e)
void AdaptGauss(T &typeT, F f, G4double a, G4double b, G4double e, G4double &sum, G4int &n)
G4double Legendre(G4double(*f)(G4double), G4double a, G4double b, G4int n)
G4double Chebyshev(G4double(*f)(G4double), G4double a, G4double b, G4int n)
G4double Hermite(T *ptrT, F f, G4int n)
G4double Laguerre(G4double(*f)(G4double), G4double alpha, G4int n)
G4double Jacobi(T *ptrT, F f, G4double alpha, G4double beta, G4int n)
G4double Jacobi(T &typeT, F f, G4double alpha, G4double beta, G4int n)
G4double Simpson(T &typeT, F f, G4double a, G4double b, G4int n)
G4double Laguerre(T &typeT, F f, G4double alpha, G4int n)
G4double Legendre10(T &typeT, F f, G4double a, G4double b)
void AdaptGauss(G4double(*f)(G4double), G4double a, G4double b, G4double e, G4double &sum, G4int &n)
G4double Legendre96(G4double(*f)(G4double), G4double a, G4double b)
G4double Legendre96(T *ptrT, F f, G4double a, G4double b)
G4double Chebyshev(T &typeT, F f, G4double a, G4double b, G4int n)
G4double Gauss(T *ptrT, F f, G4double a, G4double b)
G4double Hermite(G4double(*f)(G4double), G4int n)
G4double Gauss(G4double(*f)(G4double), G4double a, G4double b)
G4double Legendre10(T *ptrT, F f, G4double a, G4double b)
G4double Simpson(G4double(*f)(G4double), G4double a, G4double b, G4int n)
G4double AdaptiveGauss(T &typeT, F f, G4double a, G4double b, G4double e)
G4double GammaLogarithm(G4double xx)
G4double Chebyshev(T *ptrT, F f, G4double a, G4double b, G4int n)
G4double AdaptiveGauss(G4double(*f)(G4double), G4double a, G4double b, G4double e)
G4double Legendre10(G4double(*f)(G4double), G4double a, G4double b)
G4double Legendre(T *ptrT, F f, G4double a, G4double b, G4int n)
G4double Legendre(T &typeT, F f, G4double a, G4double b, G4int n)
G4double Hermite(T &typeT, F f, G4int n)
G4double Laguerre(T *ptrT, F f, G4double alpha, G4int n)
void AdaptGauss(T *typeT, F f, G4double a, G4double b, G4double e, G4double &sum, G4int &n)