Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4NystromRK4.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// History:
30// - Created: I.Gavrilenko 15.05.2009 (as G4AtlasRK4)
31// - Adaptations: J. Apostolakis May-Nov 2009
32// -------------------------------------------------------------------
33
34#include "G4NystromRK4.hh"
35#include <iostream>
36
37//////////////////////////////////////////////////////////////////
38// Constructor - with optional distance ( has default value)
39//////////////////////////////////////////////////////////////////
40
41G4NystromRK4::G4NystromRK4(G4Mag_EqRhs* magEqRhs, G4double distanceConstField)
42 : G4MagIntegratorStepper(magEqRhs, 6), // number of variables
43 m_fEq( magEqRhs ),
44 m_magdistance( distanceConstField ),
45 m_cof( 0.0 ),
46 m_mom( 0.0 ),
47 m_imom( 0.0 ),
48 m_cachedMom( false )
49{
50 m_fldPosition[0] = m_iPoint[0] = m_fPoint[0] = m_mPoint[0] = 9.9999999e+99 ;
51 m_fldPosition[1] = m_iPoint[1] = m_fPoint[1] = m_mPoint[1] = 9.9999999e+99 ;
52 m_fldPosition[2] = m_iPoint[2] = m_fPoint[2] = m_mPoint[2] = 9.9999999e+99 ;
53 m_fldPosition[3] = -9.9999999e+99;
54 m_lastField[0] = m_lastField[1] = m_lastField[2] = 0.0;
55
56 m_magdistance2 = distanceConstField*distanceConstField;
57}
58
59////////////////////////////////////////////////////////////////
60// Destructor
61////////////////////////////////////////////////////////////////
62
64{
65}
66
67/////////////////////////////////////////////////////////////////////////////////
68// Integration in one step
69/////////////////////////////////////////////////////////////////////////////////
70
71void
73(const G4double P[],const G4double dPdS[],G4double Step,G4double Po[],G4double Err[])
74{
75 G4double R[3] = { P[0], P[1] , P[2]};
76 G4double A[3] = {dPdS[0], dPdS[1], dPdS[2]};
77
78 m_iPoint[0]=R[0]; m_iPoint[1]=R[1]; m_iPoint[2]=R[2];
79
80 const G4double one_sixth= 1./6.;
81 G4double S = Step ;
82 G4double S5 = .5*Step ;
83 G4double S4 = .25*Step ;
84 G4double S6 = Step * one_sixth; // Step / 6.;
85
86
87 // John A added, in order to emulate effect of call to changed/derived RHS
88 // m_mom = sqrt(P[3]*P[3]+P[4]*P[4]+P[5]*P[5]);
89 // m_imom = 1./m_mom;
90 // m_cof = m_fEq->FCof()*m_imom;
91
92 // Point 1
93 //
94 G4double K1[3] = { m_imom*dPdS[3], m_imom*dPdS[4], m_imom*dPdS[5] };
95
96 // Point2
97 //
98 G4double p[4] = {R[0]+S5*(A[0]+S4*K1[0]),
99 R[1]+S5*(A[1]+S4*K1[1]),
100 R[2]+S5*(A[2]+S4*K1[2]),
101 P[7] };
102 getField(p);
103
104 G4double A2[3] = {A[0]+S5*K1[0],A[1]+S5*K1[1],A[2]+S5*K1[2]};
105 G4double K2[3] = {(A2[1]*m_lastField[2]-A2[2]*m_lastField[1])*m_cof,
106 (A2[2]*m_lastField[0]-A2[0]*m_lastField[2])*m_cof,
107 (A2[0]*m_lastField[1]-A2[1]*m_lastField[0])*m_cof};
108
109 m_mPoint[0]=p[0]; m_mPoint[1]=p[1]; m_mPoint[2]=p[2];
110
111 // Point 3 with the same magnetic field
112 //
113 G4double A3[3] = {A[0]+S5*K2[0],A[1]+S5*K2[1],A[2]+S5*K2[2]};
114 G4double K3[3] = {(A3[1]*m_lastField[2]-A3[2]*m_lastField[1])*m_cof,
115 (A3[2]*m_lastField[0]-A3[0]*m_lastField[2])*m_cof,
116 (A3[0]*m_lastField[1]-A3[1]*m_lastField[0])*m_cof};
117
118 // Point 4
119 //
120 p[0] = R[0]+S*(A[0]+S5*K3[0]);
121 p[1] = R[1]+S*(A[1]+S5*K3[1]);
122 p[2] = R[2]+S*(A[2]+S5*K3[2]);
123
124 getField(p);
125
126 G4double A4[3] = {A[0]+S*K3[0],A[1]+S*K3[1],A[2]+S*K3[2]};
127 G4double K4[3] = {(A4[1]*m_lastField[2]-A4[2]*m_lastField[1])*m_cof,
128 (A4[2]*m_lastField[0]-A4[0]*m_lastField[2])*m_cof,
129 (A4[0]*m_lastField[1]-A4[1]*m_lastField[0])*m_cof};
130
131 // New position
132 //
133 Po[0] = P[0]+S*(A[0]+S6*(K1[0]+K2[0]+K3[0]));
134 Po[1] = P[1]+S*(A[1]+S6*(K1[1]+K2[1]+K3[1]));
135 Po[2] = P[2]+S*(A[2]+S6*(K1[2]+K2[2]+K3[2]));
136
137 m_fPoint[0]=Po[0]; m_fPoint[1]=Po[1]; m_fPoint[2]=Po[2];
138
139 // New direction
140 //
141 Po[3] = A[0]+S6*(K1[0]+K4[0]+2.*(K2[0]+K3[0]));
142 Po[4] = A[1]+S6*(K1[1]+K4[1]+2.*(K2[1]+K3[1]));
143 Po[5] = A[2]+S6*(K1[2]+K4[2]+2.*(K2[2]+K3[2]));
144
145 // Errors
146 //
147 Err[3] = S*std::fabs(K1[0]-K2[0]-K3[0]+K4[0]);
148 Err[4] = S*std::fabs(K1[1]-K2[1]-K3[1]+K4[1]);
149 Err[5] = S*std::fabs(K1[2]-K2[2]-K3[2]+K4[2]);
150 Err[0] = S*Err[3] ;
151 Err[1] = S*Err[4] ;
152 Err[2] = S*Err[5] ;
153 Err[3]*= m_mom ;
154 Err[4]*= m_mom ;
155 Err[5]*= m_mom ;
156
157 // Normalize momentum
158 //
159 G4double normF = m_mom/std::sqrt(Po[3]*Po[3]+Po[4]*Po[4]+Po[5]*Po[5]);
160 Po [3]*=normF; Po[4]*=normF; Po[5]*=normF;
161
162 // Pass Energy, time unchanged -- time is not integrated !!
163 Po[6]=P[6]; Po[7]=P[7];
164}
165
166
167/////////////////////////////////////////////////////////////////////////////////
168// Estimate the maximum distance from the curve to the chord
169/////////////////////////////////////////////////////////////////////////////////
170
173{
174 G4double ax = m_fPoint[0]-m_iPoint[0];
175 G4double ay = m_fPoint[1]-m_iPoint[1];
176 G4double az = m_fPoint[2]-m_iPoint[2];
177 G4double dx = m_mPoint[0]-m_iPoint[0];
178 G4double dy = m_mPoint[1]-m_iPoint[1];
179 G4double dz = m_mPoint[2]-m_iPoint[2];
180 G4double d2 = (ax*ax+ay*ay+az*az) ;
181
182 if(d2!=0.) {
183 G4double ds = (ax*dx+ay*dy+az*dz)/d2;
184 dx -= (ds*ax) ;
185 dy -= (ds*ay) ;
186 dz -= (ds*az) ;
187 }
188 return std::sqrt(dx*dx+dy*dy+dz*dz);
189}
190
191/////////////////////////////////////////////////////////////////////////////////
192// Derivatives calculation - caching the momentum value
193/////////////////////////////////////////////////////////////////////////////////
194
195void
197{
198 G4double P4vec[4]= { P[0], P[1], P[2], P[7] }; // Time is P[7]
199 getField(P4vec);
200 m_mom = std::sqrt(P[3]*P[3]+P[4]*P[4]+P[5]*P[5]) ;
201 m_imom = 1./m_mom ;
202 m_cof = m_fEq->FCof()*m_imom ;
203 m_cachedMom = true ; // Caching the value
204 dPdS[0] = P[3]*m_imom ; // dx /ds
205 dPdS[1] = P[4]*m_imom ; // dy /ds
206 dPdS[2] = P[5]*m_imom ; // dz /ds
207 dPdS[3] = m_cof*(P[4]*m_lastField[2]-P[5]*m_lastField[1]) ; // dPx/ds
208 dPdS[4] = m_cof*(P[5]*m_lastField[0]-P[3]*m_lastField[2]) ; // dPy/ds
209 dPdS[5] = m_cof*(P[3]*m_lastField[1]-P[4]*m_lastField[0]) ; // dPz/ds
210}
double G4double
Definition: G4Types.hh:64
G4double FCof() const
Definition: G4Mag_EqRhs.hh:83
G4double DistChord() const
void Stepper(const G4double P[], const G4double dPdS[], G4double step, G4double Po[], G4double Err[])
Definition: G4NystromRK4.cc:73
virtual void ComputeRightHandSide(const double P[], double dPdS[])
G4NystromRK4(G4Mag_EqRhs *EquationMotion, G4double distanceConstField=0.0)
Definition: G4NystromRK4.cc:41