Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4TransparentRegXTRadiator.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29
30#include <complex>
31
34#include "Randomize.hh"
35#include "G4Integrator.hh"
36#include "G4Gamma.hh"
37
38////////////////////////////////////////////////////////////////////////////
39//
40// Constructor, destructor
41
43 G4Material* foilMat,G4Material* gasMat,
44 G4double a, G4double b, G4int n,
45 const G4String& processName) :
46 G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
47{
48 if(verboseLevel > 0)
49 G4cout<<"Regular transparent X-ray TR radiator EM process is called"<<G4endl;
50
51 // Build energy and angular integral spectra of X-ray TR photons from
52 // a radiator
53
54 fAlphaPlate = 10000;
55 fAlphaGas = 1000;
56
57 // BuildTable();
58}
59
60///////////////////////////////////////////////////////////////////////////
61
63{
64 ;
65}
66
67///////////////////////////////////////////////////////////////////////////
68//
69//
70
72{
73 G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC, theta2, theta2k /*, aMa, bMb ,sigma*/;
74 G4int k, kMax, kMin;
75
76 //aMa = fPlateThick*GetPlateLinearPhotoAbs(energy);
77 //bMb = fGasThick*GetGasLinearPhotoAbs(energy);
78 //sigma = aMa + bMb;
79
80 cofPHC = 4*pi*hbarc;
81 tmp = (fSigma1 - fSigma2)/cofPHC/energy;
82 cof1 = fPlateThick*tmp;
83 cof2 = fGasThick*tmp;
84
85 cofMin = energy*(fPlateThick + fGasThick)/fGamma/fGamma;
86 cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
87 cofMin /= cofPHC;
88
89 theta2 = cofPHC/(energy*(fPlateThick + fGasThick));
90
91 // if (fGamma < 1200) kMin = G4int(cofMin); // 1200 ?
92 // else kMin = 1;
93
94
95 kMin = G4int(cofMin);
96 if (cofMin > kMin) kMin++;
97
98 // tmp = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
99 // tmp /= cofPHC;
100 // kMax = G4int(tmp);
101 // if(kMax < 0) kMax = 0;
102 // kMax += kMin;
103
104
105 kMax = kMin + 49; // 19; // kMin + G4int(tmp);
106
107 // tmp /= fGamma;
108 // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
109
110 if(verboseLevel > 2)
111 {
112 G4cout<<cof1<<" "<<cof2<<" "<<cofMin<<G4endl;
113 G4cout<<"kMin = "<<kMin<<"; kMax = "<<kMax<<G4endl;
114 }
115 for( k = kMin; k <= kMax; k++ )
116 {
117 tmp = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
118 result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
119 // tmp = std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
120 if( k == kMin && kMin == G4int(cofMin) )
121 {
122 sum += 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
123 }
124 else
125 {
126 sum += std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
127 }
128 theta2k = std::sqrt(theta2*std::abs(k-cofMin));
129
130 if(verboseLevel > 2)
131 {
132 // G4cout<<"k = "<<k<<"; sqrt(theta2k) = "<<theta2k<<"; tmp = "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
133 // <<"; sum = "<<sum<<G4endl;
134 G4cout<<k<<" "<<theta2k<<" "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
135 <<" "<<sum<<G4endl;
136 }
137 }
138 result = 4*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
139 // result *= ( 1 - std::exp(-0.5*fPlateNumber*sigma) )/( 1 - std::exp(-0.5*sigma) );
140 // fPlateNumber;
141 result *= fPlateNumber; // *std::exp(-0.5*fPlateNumber*sigma);
142 // +1-std::exp(-0.5*fPlateNumber*sigma);
143 /*
144 fEnergy = energy;
145 // G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
146 G4Integrator<G4TransparentRegXTRadiator,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
147
148 tmp = integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
149 0.0,0.3*fMaxThetaTR) +
150 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
151 0.3*fMaxThetaTR,0.6*fMaxThetaTR) +
152 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
153 0.6*fMaxThetaTR,fMaxThetaTR) ;
154 result += tmp;
155 */
156 return result;
157}
158
159
160///////////////////////////////////////////////////////////////////////////
161//
162// Approximation for radiator interference factor for the case of
163// fully Regular radiator. The plate and gas gap thicknesses are fixed .
164// The mean values of the plate and gas gap thicknesses
165// are supposed to be about XTR formation zones but much less than
166// mean absorption length of XTR photons in coresponding material.
167
170 G4double gamma, G4double varAngle )
171{
172 /*
173 G4double result, Za, Zb, Ma, Mb, sigma;
174
175 Za = GetPlateFormationZone(energy,gamma,varAngle);
176 Zb = GetGasFormationZone(energy,gamma,varAngle);
177 Ma = GetPlateLinearPhotoAbs(energy);
178 Mb = GetGasLinearPhotoAbs(energy);
179 sigma = Ma*fPlateThick + Mb*fGasThick;
180
181 G4complex Ca(1.0+0.5*fPlateThick*Ma/fAlphaPlate,fPlateThick/Za/fAlphaPlate);
182 G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas);
183
184 G4complex Ha = std::pow(Ca,-fAlphaPlate);
185 G4complex Hb = std::pow(Cb,-fAlphaGas);
186 G4complex H = Ha*Hb;
187 G4complex F1 = (1.0 - Ha)*(1.0 - Hb )/(1.0 - H)
188 * G4double(fPlateNumber) ;
189 G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H)
190 * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) ;
191 // *(1.0 - std::pow(H,fPlateNumber)) ;
192 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
193 // G4complex R = F2*OneInterfaceXTRdEdx(energy,gamma,varAngle);
194 result = 2.0*std::real(R);
195 return result;
196 */
197 // numerically unstable result
198
199 G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, D, sigma;
200
201 aZa = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle);
202 bZb = fGasThick/GetGasFormationZone(energy,gamma,varAngle);
204 bMb = fGasThick*GetGasLinearPhotoAbs(energy);
205 sigma = aMa*fPlateThick + bMb*fGasThick;
206 Qa = std::exp(-0.5*aMa);
207 Qb = std::exp(-0.5*bMb);
208 Q = Qa*Qb;
209
210 G4complex Ha( Qa*std::cos(aZa), -Qa*std::sin(aZa) );
211 G4complex Hb( Qb*std::cos(bZb), -Qb*std::sin(bZb) );
212 G4complex H = Ha*Hb;
213 G4complex Hs = conj(H);
214 D = 1.0 /( (1 - Q)*(1 - Q) +
215 4*Q*std::sin(0.5*(aZa + bZb))*std::sin(0.5*(aZa + bZb)) );
216 G4complex F1 = (1.0 - Ha)*(1.0 - Hb)*(1.0 - Hs)
218 G4complex F2 = (1.0 - Ha)*(1.0 - Ha)*Hb*(1.0 - Hs)*(1.0 - Hs)
219 // * (1.0 - std::pow(H,fPlateNumber)) * D*D;
220 * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) * D*D;
221 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
222 result = 2.0*std::real(R);
223 return result;
224
225}
226
227
228//
229//
230////////////////////////////////////////////////////////////////////////////
231
232
233
234
235
236
237
238
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
std::complex< G4double > G4complex
Definition: G4Types.hh:69
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
G4TransparentRegXTRadiator(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="TransparentRegXTRadiator")
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle)
G4double SpectralXTRdEdx(G4double energy)
G4int verboseLevel
Definition: G4VProcess.hh:368
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasFormationZone(G4double, G4double, G4double)
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double GetGasLinearPhotoAbs(G4double)