Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4StatMF.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// Hadronic Process: Nuclear De-excitations
30// by V. Lara
31
32#include "G4StatMF.hh"
34#include "G4SystemOfUnits.hh"
35#include "G4Pow.hh"
36
37
38// Default constructor
39G4StatMF::G4StatMF() : _theEnsemble(0) {}
40
41
42// Destructor
43G4StatMF::~G4StatMF() {} //{if (_theEnsemble != 0) delete _theEnsemble;}
44
45
47{
48 // G4FragmentVector * theResult = new G4FragmentVector;
49
50 if (theFragment.GetExcitationEnergy() <= 0.0) {
51 //G4FragmentVector * theResult = new G4FragmentVector;
52 //theResult->push_back(new G4Fragment(theFragment));
53 return 0;
54 }
55
56
57 // Maximun average multiplicity: M_0 = 2.6 for A ~ 200
58 // and M_0 = 3.3 for A <= 110
59 G4double MaxAverageMultiplicity =
60 G4StatMFParameters::GetMaxAverageMultiplicity(static_cast<G4int>(theFragment.GetA()));
61
62
63 // We'll use two kinds of ensembles
64 G4StatMFMicroCanonical * theMicrocanonicalEnsemble = 0;
65 G4StatMFMacroCanonical * theMacrocanonicalEnsemble = 0;
66
67
68 //-------------------------------------------------------
69 // Direct simulation part (Microcanonical ensemble)
70 //-------------------------------------------------------
71
72 // Microcanonical ensemble initialization
73 theMicrocanonicalEnsemble = new G4StatMFMicroCanonical(theFragment);
74
75 G4int Iterations = 0;
76 G4int IterationsLimit = 100000;
78
79 G4bool FirstTime = true;
80 G4StatMFChannel * theChannel = 0;
81
82 G4bool ChannelOk;
83 do { // Try to de-excite as much as IterationLimit permits
84 do {
85
86 G4double theMeanMult = theMicrocanonicalEnsemble->GetMeanMultiplicity();
87 if (theMeanMult <= MaxAverageMultiplicity) {
88 // G4cout << "MICROCANONICAL" << G4endl;
89 // Choose fragments atomic numbers and charges from direct simulation
90 theChannel = theMicrocanonicalEnsemble->ChooseAandZ(theFragment);
91 _theEnsemble = theMicrocanonicalEnsemble;
92 } else {
93 //-----------------------------------------------------
94 // Non direct simulation part (Macrocanonical Ensemble)
95 //-----------------------------------------------------
96 if (FirstTime) {
97 // Macrocanonical ensemble initialization
98 theMacrocanonicalEnsemble = new G4StatMFMacroCanonical(theFragment);
99 _theEnsemble = theMacrocanonicalEnsemble;
100 FirstTime = false;
101 }
102 // G4cout << "MACROCANONICAL" << G4endl;
103 // Select calculated fragment total multiplicity,
104 // fragment atomic numbers and fragment charges.
105 theChannel = theMacrocanonicalEnsemble->ChooseAandZ(theFragment);
106 }
107
108 ChannelOk = theChannel->CheckFragments();
109 if (!ChannelOk) delete theChannel;
110
111 } while (!ChannelOk);
112
113
114 if (theChannel->GetMultiplicity() <= 1) {
115 G4FragmentVector * theResult = new G4FragmentVector;
116 theResult->push_back(new G4Fragment(theFragment));
117 delete theMicrocanonicalEnsemble;
118 if (theMacrocanonicalEnsemble != 0) delete theMacrocanonicalEnsemble;
119 delete theChannel;
120 return theResult;
121 }
122
123 //--------------------------------------
124 // Second part of simulation procedure.
125 //--------------------------------------
126
127 // Find temperature of breaking channel.
128 Temperature = _theEnsemble->GetMeanTemperature(); // Initial guess for Temperature
129
130 if (FindTemperatureOfBreakingChannel(theFragment,theChannel,Temperature)) break;
131
132 // Do not forget to delete this unusable channel, for which we failed to find the temperature,
133 // otherwise for very proton-reach nuclei it would lead to memory leak due to large
134 // number of iterations. N.B. "theChannel" is created in G4StatMFMacroCanonical::ChooseZ()
135
136 // G4cout << " Iteration # " << Iterations << " Mean Temperature = " << Temperature << G4endl;
137
138 delete theChannel;
139
140 } while (Iterations++ < IterationsLimit );
141
142
143
144 // If Iterations >= IterationsLimit means that we couldn't solve for temperature
145 if (Iterations >= IterationsLimit)
146 throw G4HadronicException(__FILE__, __LINE__, "G4StatMF::BreakItUp: Was not possible to solve for temperature of breaking channel");
147
148
149 G4FragmentVector * theResult = theChannel->
150 GetFragments(theFragment.GetA_asInt(),theFragment.GetZ_asInt(),Temperature);
151
152
153
154 // ~~~~~~ Energy conservation Patch !!!!!!!!!!!!!!!!!!!!!!
155 // Original nucleus 4-momentum in CM system
156 G4LorentzVector InitialMomentum(theFragment.GetMomentum());
157 InitialMomentum.boost(-InitialMomentum.boostVector());
158 G4double ScaleFactor = 0.0;
159 G4double SavedScaleFactor = 0.0;
160 do {
161 G4double FragmentsEnergy = 0.0;
162 G4FragmentVector::iterator j;
163 for (j = theResult->begin(); j != theResult->end(); j++)
164 FragmentsEnergy += (*j)->GetMomentum().e();
165 SavedScaleFactor = ScaleFactor;
166 ScaleFactor = InitialMomentum.e()/FragmentsEnergy;
167 G4ThreeVector ScaledMomentum(0.0,0.0,0.0);
168 for (j = theResult->begin(); j != theResult->end(); j++) {
169 ScaledMomentum = ScaleFactor * (*j)->GetMomentum().vect();
170 G4double Mass = (*j)->GetMomentum().m();
171 G4LorentzVector NewMomentum;
172 NewMomentum.setVect(ScaledMomentum);
173 NewMomentum.setE(std::sqrt(ScaledMomentum.mag2()+Mass*Mass));
174 (*j)->SetMomentum(NewMomentum);
175 }
176 } while (ScaleFactor > 1.0+1.e-5 && std::abs(ScaleFactor-SavedScaleFactor)/ScaleFactor > 1.e-10);
177 // ~~~~~~ End of patch !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
178
179 // Perform Lorentz boost
180 G4FragmentVector::iterator i;
181 for (i = theResult->begin(); i != theResult->end(); i++) {
182 G4LorentzVector FourMom = (*i)->GetMomentum();
183 FourMom.boost(theFragment.GetMomentum().boostVector());
184 (*i)->SetMomentum(FourMom);
185#ifdef PRECOMPOUND_TEST
186 (*i)->SetCreatorModel(G4String("G4StatMF"));
187#endif
188 }
189
190 // garbage collection
191 delete theMicrocanonicalEnsemble;
192 if (theMacrocanonicalEnsemble != 0) delete theMacrocanonicalEnsemble;
193 delete theChannel;
194
195 return theResult;
196}
197
198
199G4bool G4StatMF::FindTemperatureOfBreakingChannel(const G4Fragment & theFragment,
200 const G4StatMFChannel * aChannel,
202 // This finds temperature of breaking channel.
203{
204 G4int A = theFragment.GetA_asInt();
205 G4int Z = theFragment.GetZ_asInt();
206 G4double U = theFragment.GetExcitationEnergy();
207
208 G4double T = std::max(Temperature,0.0012*MeV);
209
210 G4double Ta = T;
211 G4double Tb = T;
212
213
214 G4double TotalEnergy = CalcEnergy(A,Z,aChannel,T);
215
216 G4double Da = (U - TotalEnergy)/U;
217 G4double Db = 0.0;
218
219 // bracketing the solution
220 if (Da == 0.0) {
221 Temperature = T;
222 return true;
223 } else if (Da < 0.0) {
224 do {
225 Tb -= 0.5 * std::fabs(Tb);
226 T = Tb;
227 if (Tb < 0.001*MeV) return false;
228
229 TotalEnergy = CalcEnergy(A,Z,aChannel,T);
230
231 Db = (U - TotalEnergy)/U;
232 } while (Db < 0.0);
233
234 } else {
235 do {
236 Tb += 0.5 * std::fabs(Tb);
237 T = Tb;
238
239 TotalEnergy = CalcEnergy(A,Z,aChannel,T);
240
241 Db = (U - TotalEnergy)/U;
242 } while (Db > 0.0);
243 }
244
245 G4double eps = 1.0e-14 * std::abs(Tb-Ta);
246 //G4double eps = 1.0e-3 ;
247
248 // Start the bisection method
249 for (G4int j = 0; j < 1000; j++) {
250 G4double Tc = (Ta+Tb)/2.0;
251 if (std::abs(Ta-Tc) <= eps) {
252 Temperature = Tc;
253 return true;
254 }
255
256 T = Tc;
257
258 TotalEnergy = CalcEnergy(A,Z,aChannel,T);
259
260 G4double Dc = (U - TotalEnergy)/U;
261
262 if (Dc == 0.0) {
263 Temperature = Tc;
264 return true;
265 }
266
267 if (Da*Dc < 0.0) {
268 Tb = Tc;
269 Db = Dc;
270 } else {
271 Ta = Tc;
272 Da = Dc;
273 }
274 }
275
276 Temperature = (Ta+Tb)/2.0;
277 return false;
278}
279
280G4double G4StatMF::CalcEnergy(G4int A, G4int Z, const G4StatMFChannel * aChannel,
281 G4double T)
282{
284
285 G4double Coulomb = (3./5.)*(elm_coupling*Z*Z)
286 *std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)/
288
289 G4double ChannelEnergy = aChannel->GetFragmentsEnergy(T);
290
291 return -MassExcess0 + Coulomb + ChannelEnergy;
292
293}
294
295
296
const double &G4Chips::Temperature Temperature
Definition: G4Chips.hh:48
std::vector< G4Fragment * > G4FragmentVector
Definition: G4Fragment.hh:65
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
double mag2() const
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
void setVect(const Hep3Vector &)
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:235
const G4LorentzVector & GetMomentum() const
Definition: G4Fragment.hh:251
G4int GetZ_asInt() const
Definition: G4Fragment.hh:223
G4double GetA() const
Definition: G4Fragment.hh:283
G4int GetA_asInt() const
Definition: G4Fragment.hh:218
static G4double GetMassExcess(const G4int A, const G4int Z)
static G4Pow * GetInstance()
Definition: G4Pow.cc:50
G4double Z13(G4int Z)
Definition: G4Pow.hh:110
G4bool CheckFragments(void)
G4double GetFragmentsEnergy(G4double T) const
size_t GetMultiplicity(void)
G4StatMFChannel * ChooseAandZ(const G4Fragment &theFragment)
G4StatMFChannel * ChooseAandZ(const G4Fragment &theFragment)
static G4double Getr0()
static G4double GetKappaCoulomb()
static G4double GetMaxAverageMultiplicity(const G4int A)
G4FragmentVector * BreakItUp(const G4Fragment &theNucleus)
Definition: G4StatMF.cc:46
G4StatMF()
Definition: G4StatMF.cc:39
~G4StatMF()
Definition: G4StatMF.cc:43
G4double GetMeanTemperature(void) const
G4double GetMeanMultiplicity(void) const