Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4QSynchRad.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// Created by Mikhail Kosov 6-Nov-2009
30//
31// --------------------------------------------------------------
32// Short description: Algorithm of Synchrotron Radiation from PDG
33// gamma>>1: dI/dw=(8pi/9)*alpha*gamma*F(w/wc), wc=3*gamma^3*c/2/R
34// F(y)=(9*sqrt(3)/8/pi)*y*int{y,inf}(K_(5/3)(x)dx) (approximated)
35// N_gamma=[5pi/sqrt(3)]*alpha*gamma; <w>=[8/15/sqrt(3)]*wc
36// for electrons/positrons: wc(keV)=2.22*[E(GeV)]^3/R(m)
37// dE per revolution = (4pi/3)*e^2*beta^3*gamma/R
38// at beta=1, dE(MeV)=.o885*[E(GeV)]^4/R(m)
39//---------------------------------------------------------------
40
41//#define debug
42//#define pdebug
43
44#include "G4QSynchRad.hh"
46#include "G4SystemOfUnits.hh"
48
49
50// Constructor
52 G4VDiscreteProcess (Name, Type), minGamma(227.), Polarization(0.,0.,1.) {
53 G4HadronicDeprecate("G4QSynchRad");
54}
55
56// Calculates MeanFreePath in GEANT4 internal units
58{
59 static const G4double coef = 0.4*std::sqrt(3.)/fine_structure_const;
60 const G4DynamicParticle* particle = track.GetDynamicParticle();
61 *cond = NotForced ;
62 G4double gamma = particle->GetTotalEnergy() / particle->GetMass();
63#ifdef debug
64 G4cout<<"G4QSynchRad::MeanFreePath: gamma = "<<gamma<<G4endl;
65#endif
66 G4double MFP = DBL_MAX;
67 if( gamma > minGamma ) // For smalle gamma neglect the process
68 {
69 G4double R = GetRadius(track);
70#ifdef debug
71 G4cout<<"G4QSynchRad::MeanFreePath: Radius = "<<R/meter<<" [m]"<<G4endl;
72#endif
73 if(R > 0.) MFP= coef*R/gamma;
74 }
75#ifdef debug
76 G4cout<<"G4QSynchRad::MeanFreePath = "<<MFP/centimeter<<" [cm]"<<G4endl;
77#endif
78 return MFP;
79}
80
82
83{
84 static const G4double hc = 1.5 * c_light * hbar_Planck; // E_c=h*w_c=1.5*(hc)*(gamma^3)/R
86 const G4DynamicParticle* particle=track.GetDynamicParticle();
87 G4double gamma = particle->GetTotalEnergy() / particle->GetMass();
88 if(gamma <= minGamma )
89 {
90#ifdef debug
91 G4cout<<"-Warning-G4QSynchRad::PostStepDoIt is called for small gamma="<<gamma<<G4endl;
92#endif
93 return G4VDiscreteProcess::PostStepDoIt(track,step);
94 }
95 // Photon energy calculation (E < 8.1*Ec restriction)
96 G4double R = GetRadius(track);
97 if(R <= 0.)
98 {
99#ifdef debug
100 G4cout<<"-Warning-G4QSynchRad::PostStepDoIt: zero or negativ radius ="
101 <<R/meter<<" [m]"<<G4endl;
102#endif
103 return G4VDiscreteProcess::PostStepDoIt(track, step);
104 }
105 G4double EPhoton = hc * gamma * gamma * gamma / R; // E_c
106 G4double dd=5.e-8;
107 G4double rnd=G4UniformRand()*(1.+dd);
108 if (rnd < 0.5 ) EPhoton *= .65 * rnd * rnd * rnd;
109 else if(rnd > .997) EPhoton *= 15.-1.03*std::log((1.-rnd)/dd+1.);
110 else
111 {
112 G4double r2=rnd*rnd;
113 G4double dr=1.-rnd;
114 EPhoton*=(2806.+28./rnd)/(1.+500./r2/r2+6500.*(std::sqrt(dr)+28.*dr*dr*dr));
115 }
116#ifdef debug
117 G4cout<<"G4SynchRad::PostStepDoIt: PhotonEnergy = "<<EPhoton/keV<<" [keV]"<<G4endl;
118#endif
119 if(EPhoton <= 0.)
120 {
121 G4cout<<"-Warning-G4QSynchRad::PostStepDoIt: zero or negativ photon energy="
122 <<EPhoton/keV<<" [keV]"<<G4endl;
123 return G4VDiscreteProcess::PostStepDoIt(track, step);
124 }
125 G4double kinEn = particle->GetKineticEnergy();
126 G4double newEn = kinEn - EPhoton ;
127 if (newEn > 0.)
128 {
131 }
132 else // Very low probable event
133 {
134 G4cout<<"-Warning-G4QSynchRad::PostStepDoIt: PhotonEnergy > TotalKinEnergy"<<G4endl;
135 EPhoton = kinEn;
139 }
140 G4ThreeVector MomDir = particle->GetMomentumDirection();
141 G4DynamicParticle* Photon = new G4DynamicParticle(G4Gamma::Gamma(), MomDir, EPhoton);
142 Photon->SetPolarization(Polarization.x(), Polarization.y(), Polarization.z());
145 return G4VDiscreteProcess::PostStepDoIt(track,step);
146}
147
148// Revolution Radius in independent units for the particle (general member function)
150{
151 static const G4double unk = meter*tesla/0.3/gigaelectronvolt;
152 const G4DynamicParticle* particle = track.GetDynamicParticle();
153 G4double z = particle->GetDefinition()->GetPDGCharge();
154 if(z == 0.) return 0.; // --> neutral particle
155 if(z < 0.) z=-z;
157 G4PropagatorInField* Field = transMan->GetPropagatorInField();
158 G4FieldManager* fMan = Field->FindAndSetFieldManager(track.GetVolume());
159 if(!fMan || !fMan->GetDetectorField()) return 0.; // --> no field at all
160 const G4Field* pField = fMan->GetDetectorField();
162 G4double PosArray[3]={position.x(), position.y(), position.z()};
163 G4double BArray[3];
164 pField->GetFieldValue(PosArray, BArray);
165 G4ThreeVector B3D(BArray[0], BArray[1], BArray[2]);
166#ifdef debug
167 G4cout<<"G4QSynchRad::GetRadius: Pos="<<position/meter<<", B(tesla)="<<B3D/tesla<<G4endl;
168#endif
169 G4ThreeVector MomDir = particle->GetMomentumDirection();
170 G4ThreeVector Ort = B3D.cross(MomDir);
171 G4double OrtB = Ort.mag(); // not negative (independent units)
172 if(OrtB == 0.) return 0.; // --> along the field line
173 Polarization = Ort/OrtB; // Polarization unit vector
174 G4double mom = particle->GetTotalMomentum(); // Momentum of the particle
175#ifdef debug
176 G4cout<<"G4QSynchRad::GetRadius: P(GeV)="<<mom/GeV<<", B(tesla)="<<OrtB/tesla<<G4endl;
177#endif
178 // R [m]= mom [GeV]/(0.3 * z * OrtB [tesla])
179 return mom * unk / z / OrtB;
180}
G4ForceCondition
@ NotForced
#define G4HadronicDeprecate(name)
G4ProcessType
@ fStopButAlive
double G4double
Definition: G4Types.hh:64
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
double z() const
double x() const
double y() const
Hep3Vector cross(const Hep3Vector &) const
double mag() const
G4double GetMass() const
const G4ThreeVector & GetMomentumDirection() const
void SetPolarization(G4double polX, G4double polY, G4double polZ)
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4double GetTotalMomentum() const
const G4Field * GetDetectorField() const
virtual void GetFieldValue(const double Point[4], double *fieldArr) const =0
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
virtual void Initialize(const G4Track &)
G4double GetPDGCharge() const
G4FieldManager * FindAndSetFieldManager(G4VPhysicalVolume *pCurrentPhysVol)
G4QSynchRad(const G4String &processName="CHIPS_SynchrotronRadiation", G4ProcessType type=fElectromagnetic)
Definition: G4QSynchRad.cc:51
G4double GetRadius(const G4Track &track)
Definition: G4QSynchRad.cc:149
G4VParticleChange * PostStepDoIt(const G4Track &track, const G4Step &step)
Definition: G4QSynchRad.cc:81
G4double GetMeanFreePath(const G4Track &track, G4double step, G4ForceCondition *fCond)
Definition: G4QSynchRad.cc:57
Definition: G4Step.hh:78
G4VPhysicalVolume * GetVolume() const
const G4ThreeVector & GetPosition() const
const G4DynamicParticle * GetDynamicParticle() const
static G4TransportationManager * GetTransportationManager()
G4PropagatorInField * GetPropagatorInField() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetNumberOfSecondaries(G4int totSecondaries)
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:289
#define DBL_MAX
Definition: templates.hh:83