Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4RegularXTRadiator.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29
30#include <complex>
31
34#include "Randomize.hh"
35
36#include "G4Gamma.hh"
37
38////////////////////////////////////////////////////////////////////////////
39//
40// Constructor, destructor
41
43 G4Material* foilMat,G4Material* gasMat,
44 G4double a, G4double b, G4int n,
45 const G4String& processName) :
46 G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
47{
48 G4cout<<"Regular X-ray TR radiator EM process is called"<<G4endl ;
49
50 // Build energy and angular integral spectra of X-ray TR photons from
51 // a radiator
52
53 fAlphaPlate = 10000;
54 fAlphaGas = 1000;
55 G4cout<<"fAlphaPlate = "<<fAlphaPlate<<" ; fAlphaGas = "<<fAlphaGas<<G4endl ;
56
57 // BuildTable() ;
58}
59
60///////////////////////////////////////////////////////////////////////////
61
63{
64 ;
65}
66
67///////////////////////////////////////////////////////////////////////////
68//
69//
70
72{
73 G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC, theta2, theta2k;
74 G4double aMa, bMb ,sigma, dump;
75 G4int k, kMax, kMin;
76
78 bMb = fGasThick*GetGasLinearPhotoAbs(energy);
79 sigma = 0.5*(aMa + bMb);
80 dump = std::exp(-fPlateNumber*sigma);
81 if(verboseLevel > 2) G4cout<<" dump = "<<dump<<G4endl;
82 cofPHC = 4*pi*hbarc;
83 tmp = (fSigma1 - fSigma2)/cofPHC/energy;
84 cof1 = fPlateThick*tmp;
85 cof2 = fGasThick*tmp;
86
87 cofMin = energy*(fPlateThick + fGasThick)/fGamma/fGamma;
88 cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
89 cofMin /= cofPHC;
90
91 theta2 = cofPHC/(energy*(fPlateThick + fGasThick));
92
93 // if (fGamma < 1200) kMin = G4int(cofMin); // 1200 ?
94 // else kMin = 1;
95
96
97 kMin = G4int(cofMin);
98 if (cofMin > kMin) kMin++;
99
100 // tmp = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
101 // tmp /= cofPHC;
102 // kMax = G4int(tmp);
103 // if(kMax < 0) kMax = 0;
104 // kMax += kMin;
105
106
107 kMax = kMin + 49; // 19; // kMin + G4int(tmp);
108
109 // tmp /= fGamma;
110 // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
111
112 if(verboseLevel > 2)
113 {
114 G4cout<<cof1<<" "<<cof2<<" "<<cofMin<<G4endl;
115 G4cout<<"kMin = "<<kMin<<"; kMax = "<<kMax<<G4endl;
116 }
117 for( k = kMin; k <= kMax; k++ )
118 {
119 tmp = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
120 result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
121 // tmp = std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
122 if( k == kMin && kMin == G4int(cofMin) )
123 {
124 sum += 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
125 }
126 else
127 {
128 sum += std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
129 }
130 theta2k = std::sqrt(theta2*std::abs(k-cofMin));
131
132 if(verboseLevel > 2)
133 {
134 // G4cout<<"k = "<<k<<"; sqrt(theta2k) = "<<theta2k<<"; tmp = "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
135 // <<"; sum = "<<sum<<G4endl;
136 G4cout<<k<<" "<<theta2k<<" "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
137 <<" "<<sum<<G4endl;
138 }
139 }
140 result = 2*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
141 // result *= ( 1 - std::exp(-0.5*fPlateNumber*sigma) )/( 1 - std::exp(-0.5*sigma) );
142 // fPlateNumber;
143 result *= ( 1 - dump + 2*dump*fPlateNumber );
144 /*
145 fEnergy = energy;
146 // G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
147 G4Integrator<G4TransparentRegXTRadiator,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
148
149 tmp = integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
150 0.0,0.3*fMaxThetaTR) +
151 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
152 0.3*fMaxThetaTR,0.6*fMaxThetaTR) +
153 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
154 0.6*fMaxThetaTR,fMaxThetaTR) ;
155 result += tmp;
156 */
157 return result;
158}
159
160
161
162///////////////////////////////////////////////////////////////////////////
163//
164// Approximation for radiator interference factor for the case of
165// fully Regular radiator. The plate and gas gap thicknesses are fixed .
166// The mean values of the plate and gas gap thicknesses
167// are supposed to be about XTR formation zones but much less than
168// mean absorption length of XTR photons in coresponding material.
169
172 G4double gamma, G4double varAngle )
173{
174
175 // some gamma (10000/1000) like algorithm
176
177 G4double result, Za, Zb, Ma, Mb;
178
179 Za = GetPlateFormationZone(energy,gamma,varAngle);
180 Zb = GetGasFormationZone(energy,gamma,varAngle);
181
182 Ma = GetPlateLinearPhotoAbs(energy);
183 Mb = GetGasLinearPhotoAbs(energy);
184
185
188
189 G4complex Ha = std::pow(Ca,-fAlphaPlate);
190 G4complex Hb = std::pow(Cb,-fAlphaGas);
191 G4complex H = Ha*Hb;
192
193 G4complex F1 = (1.0 - Ha)*(1.0 - Hb )/(1.0 - H)
195
196 G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H)
197 * (1.0 - std::pow(H,fPlateNumber));
198
199 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
200
201 result = 2.0*std::real(R);
202
203 return result;
204
205 /*
206 // numerically stable but slow algorithm
207
208 G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb; // , D;
209
210 aZa = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle);
211 bZb = fGasThick/GetGasFormationZone(energy,gamma,varAngle);
212 aMa = fPlateThick*GetPlateLinearPhotoAbs(energy);
213 bMb = fGasThick*GetGasLinearPhotoAbs(energy);
214 Qa = std::exp(-aMa);
215 Qb = std::exp(-bMb);
216 Q = Qa*Qb;
217 G4complex Ha( std::exp(-0.5*aMa)*std::cos(aZa),
218 -std::exp(-0.5*aMa)*std::sin(aZa) );
219 G4complex Hb( std::exp(-0.5*bMb)*std::cos(bZb),
220 -std::exp(-0.5*bMb)*std::sin(bZb) );
221 G4complex H = Ha*Hb;
222
223 G4complex Hs = conj(H);
224 D = 1.0 /( (1 - std::sqrt(Q))*(1 - std::sqrt(Q)) +
225 4*std::sqrt(Q)*std::sin(0.5*(aZa+bZb))*std::sin(0.5*(aZa+bZb)) );
226 G4complex F1 = (1.0 - Ha)*(1.0 - Hb)*(1.0 - Hs)
227 * G4double(fPlateNumber)*D;
228 G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb*(1.0-Hs)*(1.0-Hs)
229 * (1.0 - std::pow(H,fPlateNumber)) * D*D;
230 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
231
232
233 G4complex S(0.,0.), c(1.,0.);
234 G4int k;
235 for(k = 1; k < fPlateNumber; k++)
236 {
237 c *= H;
238 S += ( G4double(fPlateNumber) - G4double(k) )*c;
239 }
240 G4complex R = (2.- Ha - 1./Ha)*S + (1. - Ha)*G4double(fPlateNumber);
241 R *= OneInterfaceXTRdEdx(energy,gamma,varAngle);
242 result = 2.0*std::real(R);
243 return result;
244 */
245}
246
247
248//
249//
250////////////////////////////////////////////////////////////////////////////
251
252
253
254
255
256
257
258
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
std::complex< G4double > G4complex
Definition: G4Types.hh:69
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
G4RegularXTRadiator(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRegularRadiator")
G4double SpectralXTRdEdx(G4double energy)
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle)
G4int verboseLevel
Definition: G4VProcess.hh:368
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasFormationZone(G4double, G4double, G4double)
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double GetGasLinearPhotoAbs(G4double)